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Problem description

After the seminal work by Delbaen and Schachermayer (DS)
leading to NFLVR, the interest arose in finding weaker notions
of no-arbitrage that still allow to solve basic problems such as
pricing and hedging and portfolio optimization.

A breakthrough came with the work of Karatzas and Kardaras
(KK) (2007) leading to the notions of NUPBR or,
equivalently, NA1 (see also the notion of BK in Kabanov
(K)(’97)) that correspond to minimal conditions to solve
meaningfully portfolio optimization problems (see also
Fernholz and Karatzas (2009)). In parallel there was the
benchmark approach by Platen et al).
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Problem description

After the seminal work by Delbaen and Schachermayer (DS)
leading to NFLVR, the interest arose in finding weaker notions
of no-arbitrage that still allow to solve basic problems such as
pricing and hedging and portfolio optimization.

A breakthrough came with the work of Karatzas and Kardaras
(KK) (2007) leading to the notions of NUPBR or,
equivalently, NA1 (see also the notion of BK in Kabanov
(K)(’97)) that correspond to minimal conditions to solve
meaningfully portfolio optimization problems (see also
Fernholz and Karatzas (2009)). In parallel there was the
benchmark approach by Platen et al).

A basic question arises: are there significant examples for market
models in between NFLVR and NUPBR (an issue related to the exis-
tence of strict local martingales in the context of bubbles)
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Problem description

In a continuous-time context it is
not easy to find significant and realistic models. Examples appear in:

Ruf,R. ’14 ”A Systematic Approach to Constructing Market
Models With Arbitrage”

Aksamit,Choulli, Deng, Jeanblanc ’14 ”Arbitrages in a
progressive enlargement setting”

Fontana, Jeanblanc, Song ’14 ”On arbitrages arising with
honest times”

Chau, R.,Tankov ’18 ”Arbitrage and utility maximization in
market models with an insider”

In Mancin,R.’14 a jump-diffusion model with restrictions on the
investment strategies beyond the natural constraints
(non-negative portfolio values): the density process of a
candidate martingale measure turns out to be a
supermartingale that is not even a local martingale.
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Problem description

Consequently there may be interest in investigating the possible
impact of restrictions beyond the natural constraints in solving
of the basic problems also with weaker no-arbitrage concepts (for
multifactor models one may consider also the impact of the support
and of the dependence structure).

→ Intuition: even if there may be arbitrage, the additional
restrictions may not allow for arbitrarily scalable arbitrage.
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Problem description

Here an attempt to study this problem in a discrete time setting

It is commonly known that in discrete time and under
natural constraints the various possible no-arbitrage
concepts are equivalent.

One more reason to consider supplementary constraints.
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Problem description

We base ourselves on Korn and Schäl (KS)(2009) ”The numeraire
portfolio in discrete time: existence, related concepts and
applications”.

They consider as weaker no-arbitrage notion that of ”No
unbounded increasing profit” (NUIP) that can be considered
as discrete time counterpart of NUPBR (NA1).

→ In fact, they show that, if NUIP fails, then the expected
utility maximization problem has either infinitely many
solutions or no solution at all.

Differently from this approach, Baptiste, Carassus, Lepinette
(2019) introduce the notions of ”absence of (weak) immediate
profit” (A(W)IP) for discrete time models and discuss their
relation with other NA notions; they study super-replicating
pricing by convex duality methods and present numerical
experiments.
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Problem description

Ours is work in progress: rather than complete results, here
basically only examples to illustrate situations that may arise.

For simplicity of presentation, only the single-period case;
extensions to the multiperiod case are not difficult, in
particular if the underlying price process forms a Markov
process (for log-utility the optimal strategies are anyway
of the myopic type).

→ We start by recalling some notions from (KS).
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Model

A market with one non-risky asset S0 and d ≥ 1 risky assets
S i , (i = 1, · · · , d).

→ Assume S0 ≡ 1 → prices S i already discounted.

Dynamics: S i
1 = S i

0 (1 + R i ) ; S i
0 = 1

Self-financing investment strategy π = (π1, · · · , πd) (ratios
invested)

(Discounted) Portfolio value
V π

1 = 1 +
∑d

i=1 π
i (S i

1 − 1) = 1 + π′R (V π
0 = 1)
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Basic notions, NA and NUIP

C : set of admissible strategies

The standard admissibility condition V π
1 ≥ 0 implies

C = {π | 1 + π′R ≥ 0} (”natural constraints”)

Č : recession cone of C , namely Č =
⋂

a>0 a C

→ For natural constraints

Č =
⋂
a>0

{a π | 1 + π′R ≥ 0} =
⋂
a>0

{θ | a + θ′R ≥ 0}

→ Č contains strategies that can be arbitrarily scaled.
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Basic notions, NA and NUIP

Set of arbitrage opportunities

I := {π |π′R ≥ 0 a.s. and P{π′R > 0} > 0}

→ For an admissibility set C , NA holds if I ∩ C = ∅
Definition: NUIP (no unbounded increasing profit) holds if

I ∩ Č = ∅

Under NUIP one may have classical arbitrage, but not with
arbitrarily large profits (no scalable arbitrage strategies).

Under natural constraints NUIP holds iff Č contains only the trivial
strategy π = 0. Equivalently, NUIP holds whenever the strategies,
that can be arbitrarily scaled, reduce to the trivial strategy.

→ It becomes thus intuitive that, with further restrictions on the
strategies, one may have classical arbitrage, but NUIP
nevertheless holds.
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Basic notions, tools for NUIP

ρ ∈ C (C may now result also from possible restrictions in addition to
the natural constraints) is called weak numeraire portfolio (WNP) if

E

{
V π

1

V ρ
1

}
≤ 1 =

V π
0

V ρ
0

, ∀π ∈ C

→ With V ρ acting as a ”numeraire”, Vπ

V ρ is a then
supermartingale, i.e. V ρ is a supermartingale deflator for V π

with π ∈ C .

If a WNP ρ satisfies E
{

Vπ
1

V ρ
1

}
= 1 , ∀π ∈ C , it is called strong

numeraire portfolio (SNP)

→ Whenever in this case the vectors of the canonical base in Rd

belong to C , then E
{

S i
1

V ρ
1

}
= S i

0 , i = 1, · · · , d , i.e. for V ρ
1 as

numeraire the physical measure is then a martingale measure.
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Basic results, tools for NUIP

ρ ∈ C is called growth optimal (GOP) if

E
{

log
(
Vπ

1

V ρ
1

)}
≤ 0 , ∀π ∈ C

→ The GOP can be obtained as the log-optimal portfolio.

It can be shown that

NUIP ⇔ ∃ρWNP ⇔ ρ is GOP
(ρ a GOP+an additional condition ⇒ ρ is SNP)

One also has: ρ SNP ⇒ ∃! Q EMM with dQ
dP = 1

V ρ
1

→ If ρ is only WNP with E{1/V ρ
1 } < 1, then an EMM Q may

still exist (i.e. NA may still hold) but then dQ
dP 6=

1
V ρ

1
(pricing

under the physical measure and with V ρ as numeraire is then
not possible).
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Example 1

One period, one risky asset
S0 ≡ 1
S1 = S0(1 + R) with return R = eY − 1 , Y ∼ N (0, 1)

⇒ R ∈ (−1,+∞); to simplify notation put S0 = 1

V π
1 = (1− π) + π S1 = 1 + π (S1 − 1) = 1 + π (eY − 1)

Natural constraints (P{V π
1 ≥ 0} = 1 ) are π ∈ [0, 1] (short

selling and borrowing is prohibited)

as additional constraint take π ≤ π̄ ∈ (0, 1) so that
C = {π ∈ [0, π̄] for a given π̄ ∈ (0, 1)}

Explanation: One cannot invest in the risky asset more than a
proportion π̄ of one’s wealth.
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Example 1

→ NA holds irrespective of π̄ ⇒ also NUIP holds.

→ Can show that E{V π
1 } is strictly increasing for π ∈ [0, 1/2].

Case A For π̄ ≥ 1
2 (in particular for only natural constraints):

V ρ
1 with ρ = ( 1

2 ,
1
2 ) is SNP and ∃ EMM Q s.t.

dQ
dP = 1

V ρ
1

(
E
{

1
V ρ

1

}
= 2E

{
1

eY +1

}
= 1
)

→ In fact, EQ{S1} = EP
{

S1

V ρ
1

}
= 2S0E

P
{

eY

1+eY

}
= S0.
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Example 1

Case B for π̄ < 1
2 implying ρ = π̄. (Recall E{V π

1 } is strictly
increasing for π ∈ [0, 1/2]).

V ρ
1 is only WNP, NUIP holds, ∃ EMM Q, but dQ

dP 6=
1
V ρ

1
being

E
{

1
V ρ

1

}
< 1.

→ A martingale measure can be shown to be given by
dQ
dP := e−

Y
2
− 1

8 which implies EQ
{
eY
}

= E
{
e

Y
2
− 1

8

}
= 1 and

thus EQ{S1} = EQ{S0(1 + eY − 1)} = S0
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Example 1

If we had a return R with R ≥ 0 a.s. and P{R > 0} > 0, then NA
cannot hold but, independently of π̄ ∈ (0, 1),

Č = ∩a>0{θ | θ ≥ 0, and θ ≤ a} reduces to θ = 0

implying I ∩ Č = ∅ and thus that NUIP holds.

→ ρ is only WNP

→ NUIP holds but no EMM exists not even an ESMM.
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Example 2

One period, two risky assets
S0 ≡ 1 and, for i = 1, 2
S i

1 = S i
0(1 + R i ) with returns R1 = Y + γ (Z − 1), R2 = Z − 1

(to simplify notation: S1
0 = S2

0 = 1)

Y ,Z are independent on [y , ȳ) and [z , z̄) respectively.

γ ∈ R accounts for possible dependency between R1 and R2.

→ In order that S i
1 ≥ 0, i = 1, 2 we need R i ≥ −1, i = 1, 2 and

so we may choose:
for γ ∈ [0, 1) : y , z ≥ 0

for γ ≥ 1 : y ≥ 0 , z ≥ γ−1
γ ∈ [0, 1)

for γ < 0 : y ≥ −γz̄ + (γ − 1) ⇔ z̄ ≤ − y

γ + 1− 1
γ

i.e. z̄ ≤ 1− 1
γ if one wants y = 0
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Example 2

Self-financing portfolio

V π
1 = 1 + π1Y + (π2 + γπ1) (Z − 1) ; (S1

0 = S2
0 = 1 ⇒ V π

0 = 1)

The natural constraints (P{V π
1 ≥ 0} = 1) are satisfied if

π1 ≥ 0 and − γπ1 ≤ π2 ≤ 1− γ π1 for γ ∈ [0, 1)

π1 ≥ 0 and − γπ1 ≤ π2 ≤ γ − γ π1 for γ ≥ 1

π1 ≥ 0 and 2γ − γπ1 ≤ π2 ≤ 2− γ π1 for γ < 0

→ The above conditions are also necessary if y = 0 , ȳ =∞.
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Example 2

As additional constraint take

π1 + π2 ≤ c , c > 0

Explanation: For c > 1, there is thus an upper limit c-1 to what
can be borrowed from the bank account, while for c ∈ (0, 1) the
additional constraint imposes that at least a proportion 1− c of
wealth must be invested in the riskless asset.



Outline Introduction Model, basic notions and results Examples

Example 2

NUIP property

Given the admissible set C resulting from our natural and
additional constraints, one obtains

Č =
⋂
a>0

a C = {(π1, π2) |π1 ≥ 0, π1+π2 ≤ 0,−γπ1 ≤ π2 ≤ −γπ1}

Case γ < 1: Č contains only the trivial strategy π = 0

→ I ∩ Č = ∅ ⇒ NUIP holds

Case γ ≥ 1: the line π2 = −γπ1 belongs to Č .

→ I ∩ Č 6= ∅ ⇒ NUIP does not hold and thus neither NA
(shall not consider further this case.)
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Example 2

NA property

Recalling

V π
1 = 1 + π1Y + (π2 + γπ1) (Z − 1),

on the line π2 = −γ π1, being π1 ≥ 0,Y ≥ 0 a.s., we have
V π

1 = 1 + π1Y ≥ 1 = V0.

There are thus admissible arbitrage strategies on the line
segment π2 = −γ π1 for the range of possible values for π1 s.t.
the constraints are satisfied. Considering, as we do now, γ < 1,
this range is given by

0 < π1 ≤ c

1− γ

→ Shall call this line segment arbitrage line.
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Example 2

Maximal arbitrage is obtained in correspondence to the largest
admissible value of π1, namely for the strategies


(

c
1−γ ,−

γ c
1−γ

)
for γ ∈ [0, 1)(

c−2 γ
1−γ ,−

γ(c−2 γ)
1−γ

)
for γ < 0

→ NUIP holds but NA does not hold and 6 ∃ an ESMM.
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Example 2, Fig.1

C := {(π1, π2) | natural and additional constraints are all satisfied}
for the case γ ∈ [0, 1) and c > 1

π2

π1

π2 = 1 − γπ1

π2 = c − π1

1

c

( c
1−γ

,− cγ
1−γ

)
π2 = −γπ1
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Example 2, Fig.2

C := {(π1, π2) | natural and additional constraints are all satisfied}
for the case γ < 0 and c > 1

π2

π1

π2 = 2γ − γπ1

π2 = 2 − γπ1

π2 = c − π1

2

2γ

c

( c
1−γ

,− cγ
1−γ

)

π2 = −γπ1
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Example 2

Coming to the log-optimal and thus numeraire portfolio, let

E{log(V π
1 )} = E{log[1 + π1Y + (γ π1 + π2) (Z − 1)]}

→ Any optimal portfolio (for a strictly increasing utility function)
turns out to satisfy the additional constraints as an equality,
i.e. π2 = c − π1.

We may thus consider the maximization of

E{log[1 + π1Y + (γ π1 + π2) (Z − 1)]}

= E{log[1 + π1Y + (π1(γ − 1) + c) (Z − 1)]}

in the single variable π1 in its admissible ranges that depend on
the value of γ, namely
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π1 ∈



[(
c−1
1−γ

)+
, c

1−γ

]
if γ ∈ [0, 1)

[(
c−2
1−γ

)+
, c−2 γ

1−γ

]
if γ < 0

as it results from imposing that (π1, c − π1) satisfies the respective
natural constraints.
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Example 2

The maximizing strategy and the corresponding log-optimal portfolio
value depend in general on the distribution of Y and Z .

→ Question: will the log-optimal portfolio strategy coincide with
an (maximal) arbitrage strategy?

→ Again, this depends on the distribution of Y and Z
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Example 2

Case where the log-optimal portfolio (and thus GOP)
strategy coincides with the maximal arbitrage strategy

Let E{Z} = 1

Case γ ∈ [0, 1): By double conditioning on Y , using Jensen’s
inequality and π1,max = c

1−γ , for any admissible

π1 ∈
[(

c−1
1−γ

)+
, c

1−γ

]
one has

E {log (V π
1 )} = E

[
log
(
1 + π1(Y + (1− γ)(1− Z )) + c(Z − 1)

)}
≤ E

{
log
(
1 + π1(Y + (1− γ)(1− E [Z |Y ])) + c(E [Z |Y ]− 1)

)}
= E

{
log
(
1 + π1Y

)]
≤ E

[
log
(
1 + π1,maxY

)}
= E

{
log
(
1 + π1,max(Y + (1− γ)(1− Z )) + c(Z − 1)

)}
→ πmax is thus log-optimal and also GOP.
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Case γ ∈ [0, 1): By double conditioning on Y , using Jensen’s
inequality and π1,max = c

1−γ , for any admissible

π1 ∈
[(

c−1
1−γ

)+
, c

1−γ

]
one has

E {log (V π
1 )} = E

[
log
(
1 + π1(Y + (1− γ)(1− Z )) + c(Z − 1)

)}
≤ E

{
log
(
1 + π1(Y + (1− γ)(1− E [Z |Y ])) + c(E [Z |Y ]− 1)

)}
= E

{
log
(
1 + π1Y

)]
≤ E

[
log
(
1 + π1,maxY

)}
= E

{
log
(
1 + π1,max(Y + (1− γ)(1− Z )) + c(Z − 1)

)}
→ πmax is thus log-optimal and also GOP.

Case γ < 0: πmax can be shown not to be log-optimal.
(Recall that in this case the admissible values for π1 are

π1 ∈
[(

c−2
1−γ

)+
, c−2 γ

1−γ

]
, a range wider than for γ ∈ [0, 1) ).



Outline Introduction Model, basic notions and results Examples

Example 2

The log-optimal portfolio (and thus GOP) strategy does not
coincide with the maximal arbitrage strategy

Let c = 1, γ = 1/2 with Y ∼ Exp(1) and Z ∼ Exp(α)

Recall that on the arbitrage line π2 = −γπ1 we have V π
1 = 1 + π1Y

so that π1,max = c
1−γ . Considering then the portfolio π = (0, 1) (i.e.,

wealth fully invested in the second asset), it holds that

E

{
V π

1

V πmax

1

}
= E

{
Z

1 + 2Y

}
=

√
e
∫ +∞

1/2
e−t

t dt

2α
> 1 for α < 0.461

→ πmax can thus not be the GOP (if α is sufficiently small).

Since for any arbitrage portfolio πa we have V πa

1 ≤ V πmax

1 , it
follows that, even in presence of arbitrage opportunities, the
log-optimal portfolio is not necessarily an arbitrage portfolio.
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A note on pricing

If only NUIP holds, but not also NA, martingale pricing is not
possible.

NUIP → ∃GOP (→) ∃ log−optimal portfolio →
log-indifference pricing is possible, namely

plog (H) = E

{
H

V ρ
1

}
is by definition a ”fair price”, i.e. the benchmarked (in units
of the GOP) price process is a martingale.

Also superhedging pricing is possible and, if ∃ SNP, real world
pricing. In general they are different, but coincide in complete
markets.
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Un bon et joyeux anniversaire,
Nicole!
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