Bridges... ou comment distinguer les vrais des faux En l'honneur de Nicole El Karoui

Sylvie Rœlly (Univ. Potsdam)

Paris, 22-24 mai 2019

Outline

1 Brownian Bridges and α -pinned Brownian diffusion

2 Are pinned diffusions always bridges?

Brownian Bridge as Gaussian process

Characterization through the 1st and 2nd moment

The x-y-Brownian bridge $B^{xy}=(B^{xy}_t)_{t\in[0,1]}$ is the Gaussian process with the following moments

$$\mathbf{E}\left(B_{t}^{xy}\right) = (1-t)x + ty$$

$$\mathbf{Cov}\left(B_{s}^{xy}, B_{t}^{xy}\right) = \min(s, t) - st$$

As Gaussian Markov process

 B^{xy} is the Markov process satisfying $\mathbf{P}\left(\,B_0^{xy}=x\,\right)=1$ whose transition probability density is

$$p^{y}(s, w; t, z) = \frac{p(s, w; t, z)p(t, z; 1, y)}{p(s, w; 1, y)}, \ s < t, \ w, z \in \mathbb{R}$$

$$p(s, w; t, z) = \frac{1}{\sqrt{2\pi(t-s)}} e^{-\frac{1}{2}\frac{(z-w)^2}{t-s}}$$
 is the

transition probability density of the Brownian motion.

Brownian Bridge as solution of an SDE with affine drift

Consider the stochastic differential equation

$$dX_t = \frac{y - X_t}{1 - t} dt + dB_t, \quad X_0 = x, \tag{1}$$

where B is a real Brownian motion.

Its unique strong solution on [0,1) is the x-y-Brownian Bridge given by

$$B_t^{xy} = (1-t)x + ty + (1-t)\int_0^t \frac{1}{1-s} dB_s, \quad t \in [0,1).$$

Extending it by continuity, one gets $B_1^{xy} = y$.

Brownian Bridge as (unique) solution of a duality formula

For all Φ smooth cylindrical functionals and for all **loop** $g \in L^2([0,1];\mathbb{R})$,

$$\mathsf{E}\left(D_{g}\Phi(B^{\mathsf{x}\mathsf{y}}) = \mathsf{E}\left(\Phi(B^{\mathsf{x}\mathsf{y}})\ \delta(g)\right) \tag{2}$$

- A **loop** on [0,1] is a function g with vanishing integral: $\int_0^1 g(t)dt = 0$.
- $D_g \Phi$ is the Gâteaux/Malliavin -derivative of Φ in the direction $\int_0^{\cdot} g(t)dt$, element of the Cameron-Martin space.
- $\delta(g) := \int_0^1 g(t) dB_t^{xy}$ is the **stochastic integral** under the Brownian Bridge.

Remark: Set $b(t,z):=\frac{y-z}{1-t}$, the drift of the x-y-Brownian Bridge. Then

$$F_b := \partial_t b + \nabla_z b.b + \frac{1}{2} \triangle_z b \equiv 0.$$

as well as for any other Brownian Bridge.

The α -pinned Brownian diffusion

• Perturbing the SDE (1), consider for $\alpha > 0$

$$dX_t = \alpha \frac{y - X_t}{1 - t} dt + dB_t, \quad X_0 = x.$$
 (3)

Its strong sol. $B_{\alpha}^{xy}(\cdot)$: α -pinned Brownian diffusion between x and y.

• Also called α -Wiener bridge, scaled Wiener bridge or α -Brownian bridge M. J. Brennan and E. Schwartz, *Arbitrage in stock index futures* ('90), R. Mansuy ('04), M. Barczy, G. Pap, P. Kern ('10-11), X.-M. Li ('16)

$$x = 0,$$

 $y = 1,$
 $\alpha = 0.5, 1, 2$

• B_{α}^{xy} is the Gaussian process with 1st and 2nd moments

$$\mathsf{E}(B_{\alpha}^{\mathsf{x}\mathsf{y}}(t)) = (1-t)^{\alpha} \, \mathsf{x} + (1-(1-t)^{\alpha}) \, \mathsf{y}$$

For $s \leq t$,

$$\mathbf{Cov}\left(B_{\alpha}^{xy}(s), B_{\alpha}^{xy}(t)\right) = \begin{cases} -\sqrt{(1-s)(1-t)}\log(1-s), & \alpha = \frac{1}{2}, \\ \frac{(1-s)^{\alpha}(1-t)^{\alpha}(1-(1-s)^{1-2\alpha})}{1-2\alpha}, & \alpha \neq \frac{1}{2}. \end{cases}$$

• For any $t \in [0,1)$, $B_{\alpha}^{xy}(t) = (1-t)^{\alpha}x + (1-(1-t)^{\alpha})y + (1-t)^{\alpha}\int_{0}^{t}\frac{1}{(1-s)^{\alpha}}dB_{s}.$

Questions:

- (i) Does this process degenerate at time 1: $\lim_{t\to 1} B_{\alpha}^{xy}(t) = y \ a.s.$?
- (ii) Does the family $(B_{\alpha}^{xy}; x, y \in \mathbb{R})$ match with a family of bridges ?

More general class of (pinned) diffusions

Joint work with F. Hildebrandt (Hamburg).

Take h and σ continuous functions on [0,1), $\sigma > 0$. Consider

$$dX_t = h(t)(y - X_t) dt + \sigma(t) dB_t, \quad X_0 = x,$$

whose solution X^{xy} satisfies for any $t \in [0, 1)$,

$$X_t^{xy} = \varphi(t) x + (1 - \varphi(t)) y + \varphi(t) \int_0^t \frac{\sigma(s)}{\varphi(s)} dB_s, \tag{4}$$

where $\varphi(t) := \exp(-\int_0^t h(s)ds)$.

Proposition:

Suppose (A1) h is bounded from below and $\lim_{t\to 1}\int_0^t h(r)\,dr = +\infty$ (A2) $\lim_{t\to 1}\int_0^t \sigma^2(r)\,dr < +\infty$.

Then the above diffusion X^{xy} is **pinned** i.e. $P\left(\lim_{t\to 1} X_t^{xy} = y\right) = 1$.

• One controls the product $\varphi(t) \int_0^t \frac{\sigma(s)}{\varphi(s)} dB_s$ and its convergence to 0 by integration by parts.

Does $(X^{xy})_{x,y}$ match with the bridges of a Gaussian process?

Theorem

Assume that the processes $\{X^{xy}, x, y \in \mathbb{R}\}$ defined by (4) constitute a family of pinned diffusions. They correspond to the bridges of a non-degenerate Gaussian Markov process Z if and only if

$$\int_0^1 \sigma^2(r) dr < +\infty \text{ and } h(t) = \frac{\sigma^2(t)}{\int_t^1 \sigma^2(r) dr}, \ t \in [0, 1).$$

In this case the unconditioned process Z follows the dynamics $dZ_t = \sigma(t) \, dB_t$.

• Corollary: The α -pinned Brownian diffusion ($\alpha \neq 1$) does not match with the bridges of any Gaussian process:

$$\sigma \equiv 1 \Rightarrow h(t) = \frac{1}{1-t}, t < 1.$$

Sketch of the proof

• Any non-degenerate continuous Gaussian Markov process Z is a shifted space-time rescaled Brownian motion:

$$Z_t \sim \mathbf{E}(Z_t) + u(t) \hat{B}_{v(t)}$$

where u and v are positive and v is non-decreasing (see Neveu, '68).

 Therefore its covariance function and the covariance function of its bridges has a very specific structure:

$$\mathsf{Cov}\left(Z_s^{\mathsf{x}\mathsf{y}},Z_t^{\mathsf{x}\mathsf{y}}\right) = u(s)v(s)u(t)(1-v(t)).$$

• This leads to $\Sigma = u(1) < +\infty$ and the desired form for h.

More generally:

Does $(X^{xy})_{x,y}$ match with the bridges of an Itô-diffusion?

Consider regular Itô-diffusions solution of SDE

$$dZ_t = b(t, Z_t) dt + \rho(t, Z_t) dB_t$$

where b and ρ are smooth as well as the transition density of Z.

Theorem

Assume that the processes $\{X^{xy}, x, y \in \mathbb{R}\}$ defined by (4) constitute a family of pinned diffusions whose drift h and diffusion coefficients σ are of class C^1 on [0,1). They correspond to the bridges of a regular Itô diffusion Z if and only if

$$\int_0^1 \sigma^2(r) dr < +\infty \text{ and } h(t) = \frac{\sigma^2(t)}{\int_t^1 \sigma^2(r) dr}.$$

In this case Z is indeed Gaussian and one can choose its drift coefficient $b \equiv 0$ and its diffusion coefficient $\rho^2(t,z) \equiv \sigma^2(t)$ (as previous).

Sketch of the proof

 \bullet Consider a regular Itô-diffusion Z, given by

$$dZ_t = b(t, Z_t) dt + \rho(t, Z_t) dB_t$$

and define the space-time function (reciprocal characteristics)

$$F_{b,\rho}(t,z) := \partial_t \frac{b}{\rho^2}(t,z) + \frac{1}{2}\partial_z \Big(\frac{b^2}{\rho^2} + \rho^2 \partial_z \frac{b}{\rho^2}\Big)(t,z).$$

• The function $F_{b,\rho}$ is indeed invariant on the whole family of bridges associated to Z (Clark, '90):

Z and \tilde{Z} share the same bridges if and only if their invariant coincide, that is

$$\rho^2 \equiv \tilde{\rho}^2 \quad \text{and} \quad F_{b,\rho} \equiv F_{\tilde{b},\tilde{\rho}}.$$

- Thus one should have
 - $\rho \equiv \sigma$
 - $F_{b,\sigma} \equiv F_{\tilde{b}_y,\sigma}$ where $\tilde{b}_y(t,z) := h(t)(y-z)$ depends on y.
- In particular,

$$F_{\tilde{b}_{y},\sigma}(t,z) = \frac{h'(t)\sigma^{2}(t) - h(t)\partial_{t}\sigma^{2}(t) - h^{2}(t)\sigma^{2}(t)}{\sigma^{4}(t)} (y-z)$$
 should not depend on y . Hence,

$$h' = h^2 + h \partial_t \log \sigma^2$$
.

which leads to the announced form.

Remark: For the α -pinned Brownian diffusion, $\tilde{b}_y(t,z) := \alpha \frac{y-z}{1-t}$ and an explicit computation gives

$$F_{\tilde{b}_y,1}(t,z) = \alpha(1-\alpha)\frac{y-z}{(1-t)^2}$$

For $\alpha \neq 1$ does not match with the bridges of any regular Itô-diffusion.

Applications/Generalisations

• Consider the diffusion X^{xy} solution of

$$dX_t = \alpha \frac{y - X_t}{(1 - t)^{1 + \gamma}} dt + dB_t, \quad X_0 = x,$$

where $\alpha > 0$ and $\gamma \geq 0$.

For $(\alpha, \gamma) \neq (1, 0)$ this pinned Brownian diffusions cannot be obtained as the bridges of any Gaussian Markov process or of any regular Itô diffusion.

• Let $f:[0,1) \to (0,+\infty)$ be a continuous density function and let F its primitive. We consider the diffusion X^{xy} solution of

$$dX_t = \frac{f(t)}{1 - F(t)}(y - X_t) dt + \sqrt{f(t)} dB_t, \quad t \in [0, 1), \quad X_0 = x.$$

 X^{00} is known in Statistics as F-Wiener bridges , see e.g. van der Vaart. $\{X^{xy}, x, y \in \mathbb{R}\}$ coincides with the bridges of the Gaussian Markov process $Z_t = \int_0^t \sqrt{f(s)} \, dB_s \stackrel{(d)}{=} B_{F(t)}, \quad t \in [0,1].$