A few remarks on the bootstrap

For some moderately difficult statistical problems (a.k.a. in moderate and high dimensions)
N_{2} El Karoui (joint with Elizabeth Purdom)

Department of Statistics + Criteo AI Lab
UC, Berkeley + Paris/Palo Alto
N. El Karoui's $3 x 25$ birthday conference May 2019

What is the bootstrap?

Bootstrap (Efron, '79): care about statistic $\widehat{\theta}_{n}$; would like to know its law. Can we do this from the data/sample we observe?
Example: sample mean; suppose we have data X_{1}, \ldots, X_{n}, i.i.d, $X_{i} \in \mathbb{R} . \mathbf{E}\left(X_{i}\right)=\mu$, var $\left(X_{i}\right)=\sigma^{2}$; interested in

$$
\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

What is the bootstrap?

Bootstrap (Efron, '79): care about statistic $\widehat{\theta}_{n}$; would like to know its law. Can we do this from the data/sample we observe?
Example: sample mean; suppose we have data X_{1}, \ldots, X_{n}, i.i.d, $X_{i} \in \mathbb{R} . \mathbf{E}\left(X_{i}\right)=\mu$, $\operatorname{var}\left(X_{i}\right)=\sigma^{2}$; interested in

$$
\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

Want to create a confidence interval for μ, the mean of X_{i}.

What is the bootstrap?

Bootstrap (Efron, '79): care about statistic $\widehat{\theta}_{n}$; would like to know its law. Can we do this from the data/sample we observe?
Example: sample mean; suppose we have data X_{1}, \ldots, X_{n}, i.i.d, $X_{i} \in \mathbb{R} . \mathbf{E}\left(X_{i}\right)=\mu$, $\operatorname{var}\left(X_{i}\right)=\sigma^{2}$; interested in

$$
\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

Want to create a confidence interval for μ, the mean of X_{i}.

- Option 1: law of $\widehat{\theta}_{n}=\bar{X}_{n}$? Central limit theorem:

$$
\sqrt{n} \frac{\bar{X}_{n}-\mu}{\sigma} \Longrightarrow \mathcal{N}(0,1)
$$

$100(1-\alpha) \% \mathrm{CI}: \bar{X}_{n} \pm \frac{\sigma}{\sqrt{n}} z_{1-\alpha / 2}$; t-distribution variants

- Option 2: bootstrap

Bootstrap

More details in the case of sample mean
Idea: from the original sample, create lots of "new" datasets; this should mimick sampling mechanism which gave us \bar{X}_{n} from population distribution
In more detail:

- For $b=1, \ldots, B$, repeat:

Bootstrap

More details in the case of sample mean

Idea: from the original sample, create lots of "new" datasets; this should mimick sampling mechanism which gave us \bar{X}_{n} from population distribution
In more detail:

- For $b=1, \ldots, B$, repeat:
- Sample n times with replacement from $\left\{X_{i}\right\}_{i=1}^{n}$, to get dataset $D_{b}=\left\{X_{1, b}^{*}, \ldots, X_{n, b}^{*}\right\}$.

Bootstrap

More details in the case of sample mean

Idea: from the original sample, create lots of "new" datasets; this should mimick sampling mechanism which gave us \bar{X}_{n} from population distribution
In more detail:

- For $b=1, \ldots, B$, repeat:
- Sample n times with replacement from $\left\{X_{i}\right\}_{i=1}^{n}$, to get dataset $D_{b}=\left\{X_{1, b}^{*}, \ldots, X_{n, b}^{*}\right\}$.
- Compute $\bar{X}_{n, b}^{*}=\frac{1}{n} \sum_{i=1}^{n} X_{i, b}^{*}$

Bootstrap

More details in the case of sample mean

Idea: from the original sample, create lots of "new" datasets; this should mimick sampling mechanism which gave us \bar{X}_{n} from population distribution
In more detail:

- For $b=1, \ldots, B$, repeat:
- Sample n times with replacement from $\left\{X_{i}\right\}_{i=1}^{n}$, to get dataset $D_{b}=\left\{X_{1, b}^{*}, \ldots, X_{n, b}^{*}\right\}$.
- Compute $\bar{X}_{n, b}^{*}=\frac{1}{n} \sum_{i=1}^{n} X_{i, b}^{*}$

Bootstrap

More details in the case of sample mean

Idea: from the original sample, create lots of "new" datasets; this should mimick sampling mechanism which gave us \bar{X}_{n} from population distribution
In more detail:

- For $b=1, \ldots, B$, repeat:
- Sample n times with replacement from $\left\{X_{i}\right\}_{i=1}^{n}$, to get dataset $D_{b}=\left\{X_{1, b}^{*}, \ldots, X_{n, b}^{*}\right\}$.
- Compute $\bar{X}_{n, b}^{*}=\frac{1}{n} \sum_{i=1}^{n} X_{i, b}^{*}$

Now use $\left\{\bar{X}_{n, b}^{*}\right\}_{b=1}^{B}$ as approximation of distribution of \bar{X}_{n}

Bootstrap
 More details in the case of sample mean

Idea: from the original sample, create lots of "new" datasets; this should mimick sampling mechanism which gave us \bar{X}_{n} from population distribution
In more detail:

- For $b=1, \ldots, B$, repeat:
- Sample n times with replacement from $\left\{X_{i}\right\}_{i=1}^{n}$, to get dataset $D_{b}=\left\{X_{1, b}^{*}, \ldots, X_{n, b}^{*}\right\}$.
- Compute $\bar{X}_{n, b}^{*}=\frac{1}{n} \sum_{i=1}^{n} X_{i, b}^{*}$

Now use $\left\{\bar{X}_{n, b}^{*}\right\}_{b=1}^{B}$ as approximation of distribution of \bar{X}_{n} In particular, $95 \% \mathrm{Cl}$ could be, if $\bar{X}_{n,(k)}$ are increasingly ordered values of $\left\{\bar{X}_{n, b}\right\}_{b=1}^{B}$

$$
\left(\bar{X}_{n,(2.5 \% * B)}^{*}, \bar{X}_{n,(97.5 \% * B)}^{*}\right)
$$

So called bootstrap percentile interval; simple computation shows asymptotically valid
Of course use it for much more complicated statistics

Bootstrap
 Plug-in principle etc...

P : data generating distribution. Empirical distribution:

$$
\hat{P}_{n}=\frac{1}{n} \sum_{i=1}^{n} \delta_{X_{i}}
$$

Let θ be a functional of those distributions: e.g $\theta(P)$: median or trimmed mean of population
Often: use $\theta\left(\hat{P}_{n}\right)$ to get confidence interval/statement about $\theta(P)$.
Question e.g.:
(Asymptotic) law of $\theta\left(\hat{P}_{n}\right)-\theta(P)$?

Bootstrap
 Plug-in principle etc...

P : data generating distribution. Empirical distribution:

$$
\hat{P}_{n}=\frac{1}{n} \sum_{i=1}^{n} \delta x_{i}
$$

Let θ be a functional of those distributions: e.g $\theta(P)$: median or trimmed mean of population
Often: use $\theta\left(\hat{P}_{n}\right)$ to get confidence interval/statement about $\theta(P)$.
Question e.g.:

$$
\text { (Asymptotic) law of } \theta\left(\hat{P}_{n}\right)-\theta(P) \text { ? }
$$

bootstrap: if \hat{P}_{n}^{*} is bootstrapped version of \hat{P}_{n}, Bootstrap law of $\left[\theta\left(\hat{P}_{n}^{*}\right)-\theta\left(\hat{P}_{n}\right)\right]$ " \simeq " Law of $\left[\theta\left(\hat{P}_{n}\right)-\theta(P)\right]$?
Left-hand side: we can "resample" the data to get this
Righ-hand side: ideally, we would like to know it, but not accessible

Bootstrap

More precise requirement

Suppose we are interested in random variable

$$
\widehat{\theta}\left(\hat{P}_{n}, P\right) \text { and its law } \mathcal{L}_{n}\left(\widehat{\theta}\left(\hat{P}_{n}, P\right)\right)
$$

E.g $\widehat{\theta}\left(\hat{P}_{n}, P\right)=\sqrt{n}\left(\mu\left(\hat{P}_{n}\right)-\mu(P)\right)$

Suppose

$$
\mathcal{L}_{n}\left(\widehat{\theta}\left(\hat{P}_{n}, P\right)\right) \Longrightarrow \mathcal{L}
$$

Call $\mathcal{L}_{n, \text { boot }}\left(\hat{P}_{n}\right)$ the conditional law of $\widehat{\theta}\left(\hat{P}_{n}^{*}, \hat{P}_{n}\right) \mid \hat{P}_{n}$ Then bootstrap works if, e.g,

$$
\lim _{n \rightarrow \infty} d\left(\mathcal{L}_{n, \text { boot }}\left(\hat{P}_{n}\right), \mathcal{L}\right) \rightarrow 0, \text { a.s } X_{1}, \ldots, X_{n}, \ldots
$$

where d : distance between probability measures; alternative: convergence in probability

Bootstrap

More precise requirement

Suppose we are interested in random variable

$$
\widehat{\theta}\left(\hat{P}_{n}, P\right) \text { and its law } \mathcal{L}_{n}\left(\widehat{\theta}\left(\hat{P}_{n}, P\right)\right)
$$

E.g $\widehat{\theta}\left(\hat{P}_{n}, P\right)=\sqrt{n}\left(\mu\left(\hat{P}_{n}\right)-\mu(P)\right)$

Suppose

$$
\mathcal{L}_{n}\left(\widehat{\theta}\left(\hat{P}_{n}, P\right)\right) \Longrightarrow \mathcal{L}
$$

Call $\mathcal{L}_{n, \text { boot }}\left(\hat{P}_{n}\right)$ the conditional law of $\widehat{\theta}\left(\hat{P}_{n}^{*}, \hat{P}_{n}\right) \mid \hat{P}_{n}$ Then bootstrap works if, e.g,

$$
\lim _{n \rightarrow \infty} d\left(\mathcal{L}_{n, \text { boot }}\left(\hat{P}_{n}\right), \mathcal{L}\right) \rightarrow 0, \text { a.s } X_{1}, \ldots, X_{n}, \ldots
$$

where d : distance between probability measures; alternative: convergence in probability
Example: X_{i} i.i.d mean $\mu, \operatorname{cov}\left(X_{i}\right)=\Sigma$, then conditionally on X_{1}, \ldots, X_{n}

$$
\sqrt{n}\left(\bar{X}_{n}^{*}-\bar{X}_{n}\right) \Longrightarrow \mathcal{N}(0, \Sigma)
$$

for almost every sequence $X_{1}, \ldots, X_{n}, \ldots$

Bootstrap

Literature, variants etc...

Bootstrap: brilliant idea, huge impact for applied, methodological and theoretical statistics; probably one of the most widely used tool in applied statistics
Everything seems possible; no need for asymptotics. Now, beside stat practice, very useful in teaching data science and inferential ideas.

Bootstrap

Literature, variants etc...

Bootstrap: brilliant idea, huge impact for applied, methodological and theoretical statistics; probably one of the most widely used tool in applied statistics
Everything seems possible; no need for asymptotics. Now, beside stat practice, very useful in teaching data science and inferential ideas.
Theory started almost immediately: Bickel-Freedman (AoS, '81) first fairly general paper.
Lots of activity both practical and theoretical for 30+ years

Bootstrap

Literature, variants etc...

Bootstrap: brilliant idea, huge impact for applied, methodological and theoretical statistics; probably one of the most widely used tool in applied statistics
Everything seems possible; no need for asymptotics. Now, beside stat practice, very useful in teaching data science and inferential ideas.
Theory started almost immediately: Bickel-Freedman (AoS, '81) first fairly general paper.
Lots of activity both practical and theoretical for 30+ years Standard books: Davison-Hinkley (applied/theory), Hall (mostly theory), Politis-Romano-Wolf (subsampling)
And lots of variants of bootstrap (e.g m-out-of-n bootstrap
(Bickel et al.), various other subsampling methods...)
Other old techniques discussed later

Bootstrap

Literature, variants etc...

Bootstrap: brilliant idea, huge impact for applied, methodological and theoretical statistics; probably one of the most widely used tool in applied statistics
Everything seems possible; no need for asymptotics. Now, beside stat practice, very useful in teaching data science and inferential ideas.
Theory started almost immediately: Bickel-Freedman (AoS, '81) first fairly general paper.
Lots of activity both practical and theoretical for 30+ years Standard books: Davison-Hinkley (applied/theory), Hall (mostly theory), Politis-Romano-Wolf (subsampling)
And lots of variants of bootstrap (e.g m-out-of-n bootstrap
(Bickel et al.), various other subsampling methods...)
Other old techniques discussed later
One big question: when does it work?

Bootstrap

When does it work? 1-dimensional case

Example where it does not work: $X_{i}{ }^{\text {iid }} \operatorname{Unif}[0, a]$, distribution of the $\left(a-\max X_{i}\right)$

Bootstrap

When does it work? 1-dimensional case

Example where it does not work: $X_{i}{ }^{\text {iid }} \backsim \operatorname{Unif}[0, a]$, distribution of the $\left(a-\max X_{i}\right)$
Essentially, need the function θ to be "smooth" enough. Formal results on next slide. Informally: von Mises calculus:
θ differentiable implies: if $\theta^{\prime}(\cdot ; P)$ is linear

$$
\theta\left(\hat{P}_{n}\right)-\theta(P) \simeq \frac{1}{\sqrt{n}} \theta^{\prime}\left(G_{n} ; P\right)
$$

where $G_{n}=\sqrt{n}\left(\hat{P}_{n}-P\right)$ (Donsker thm: limit of G_{n} is (P-)Brownian bridge)

Bootstrap

When does it work? 1-dimensional case

Example where it does not work: $X_{i}{ }^{\text {iid }} \cup$ Unif $[0, a]$, distribution of the $\left(a-\max X_{i}\right)$
Essentially, need the function θ to be "smooth" enough. Formal results on next slide. Informally: von Mises calculus:
θ differentiable implies: if $\theta^{\prime}(\cdot ; P)$ is linear

$$
\theta\left(\hat{P}_{n}\right)-\theta(P) \simeq \frac{1}{\sqrt{n}} \theta^{\prime}\left(G_{n} ; P\right),
$$

where $G_{n}=\sqrt{n}\left(\hat{P}_{n}-P\right)$ (Donsker thm: limit of G_{n} is (P-)Brownian bridge)
Bootstrap: expand $\theta\left(\hat{P}_{n}^{*}\right)$ around $\theta(P)+$ linearity to get:

$$
\theta\left(\hat{P}_{n}^{*}\right)-\theta\left(\hat{P}_{n}\right) \simeq \frac{1}{\sqrt{n}} \theta^{\prime}\left(G_{n}^{*} ; P\right),
$$

$G_{n}^{*}=\sqrt{n}\left(\hat{P}_{n}^{*}-\hat{P}_{n}\right) ; G_{n}^{*}$ also has P-Brownian bridge as limit

Look at θ as mapping from $\left(D[-\infty, \infty],\|\cdot\|_{\infty}\right) \mapsto \mathbb{R}$, where D càdlàg/rcll functions. If θ Hadamard differentiable, i.e

$$
\begin{aligned}
& \quad\left|\frac{\theta\left(F+t h_{t}\right)-\theta(F)}{t}-\theta^{\prime}(h ; F)\right| \rightarrow 0 \\
& \text { as } t \rightarrow 0^{+}, \forall h_{t}: \sup _{x \in \mathbb{R}}\left|h_{t}(x)-h(x)\right| \rightarrow 0
\end{aligned}
$$

$\theta^{\prime}(\cdot ; F)$: continuous linear map, $\left(D,\|\cdot\|_{\infty}\right) \mapsto \mathbb{R}$.
Then bootstrap works.
Then not much need to understand fluctuation properties of $\theta\left(\hat{P}_{n}\right)$: resampling does it for us.
Often summarized as : "bootstrap works for smooth statistics"

Work in the high-dimensional case: data vectors $\left\{X_{i}\right\}_{i=1}^{n} \in \mathbb{R}^{p}$, $p / n \rightarrow \kappa \in(0,1)$
Arguments above (proximity of empirical and population distribution) fail; but what about bootstrap?
(1) Bootstrapping (robust) regression: review
(2) Bootstrapping regression in high-dimension: results
(3) RM issues in bootstrap

Why p / n not close to 0 ?

Plan for rest of talk

Work in the high-dimensional case: data vectors $\left\{X_{i}\right\}_{i=1}^{n} \in \mathbb{R}^{p}$, $p / n \rightarrow \kappa \in(0,1)$
Arguments above (proximity of empirical and population distribution) fail; but what about bootstrap?
(1) Bootstrapping (robust) regression: review
(2) Bootstrapping regression in high-dimension: results
(RM issues in bootstrap
Why p / n not close to 0 ? 1) often better small sample approximations; 2) often allows comparison of methods at 1st order and not second order; so more dramatic differencing of methods - often consistent with practical knowledge 3) power series vs 1st order approximation 4) problems statistically non-trivial

Review: How to bootstrap in regression? Model

Motto: copy the data-generating distribution.
Model: $Y_{i} \in \mathbb{R}, X_{i} \in \mathbb{R}^{p}$,

$$
Y_{i}=X_{i}^{\top} \beta_{0}+\epsilon_{i}, 1 \leq i \leq n
$$

For ρ loss function, consider

$$
\widehat{\beta}_{\rho}=\operatorname{argmin}_{\beta \in \mathbb{R}^{p}} \sum_{i=1}^{n} \rho\left(Y_{i}-X_{i}^{T} \beta\right)
$$

Simplest question: can get CI for $\beta_{0}(1)$ based on $\widehat{\beta}_{\rho}(1)$?

Review: How to bootstrap in regression?

Bootstrapping from residuals

Motto: copy the data-generating process.
Model: $Y_{i} \in \mathbb{R}, X_{i} \in \mathbb{R}^{p}$,

$$
Y_{i}=X_{i}^{\top} \beta_{0}+\epsilon_{i}, 1 \leq i \leq n .
$$

What's random? ϵ_{i} in this context; they are i.i.d.
X_{i} assumed "fixed" in this example.
So bootstrap from the residuals:
(1) estimate β_{0} by $\widehat{\beta}_{\rho}$
(2) estimate ϵ_{i} by e_{i} 's; typically $e_{i}=Y_{i}-X_{i}^{\top} \widehat{\beta}$
(3) Repeat for $b=1, \ldots, B$
(1) Get new errors $e_{i, b}^{*}$ by sampling i.i.d at random from $\left\{e_{i}\right\}_{i=1}^{n}$
(2) Get new dataset $Y_{i, b}^{*}=X_{i}^{\top} \widehat{\beta}+e_{i, b}^{*}$
(3) Fit this new dataset to get $\widehat{\beta}_{b}^{*}$

Do inference using $\left\{\widehat{\beta}_{b}^{*}\right\}_{b=1}^{B}$

Bootstrapping from the residuals
 $\epsilon_{i} \stackrel{\text { iid }}{\sim} \mathcal{N}(0,1)$

Figure: Performance of 95% confidence intervals of $\beta_{1}: n=500$, 1,000 simulations Residuals method is anti-conservative!

Bootstrapping from the residuals

Understanding and fixing(?) the problem

Note: Bickel and Freedman ('83) studied high-dimensional residual bootstrap for least-squares; showed that residuals did not have the right distribution. Mammen ('89) for robust regression when $p^{2} / n \rightarrow 0$

Bootstrapping from the residuals

Understanding and fixing(?) the problem

Note: Bickel and Freedman ('83) studied high-dimensional residual bootstrap for least-squares; showed that residuals did not have the right distribution. Mammen ('89) for robust regression when $p^{2} / n \rightarrow 0$
Of course, if $e=\left\{e_{i}\right\}_{i=1}^{n}$ are residuals,

$$
e=\left(\operatorname{Id}-X\left(X^{\top} X\right)^{-1} X^{\top}\right) \epsilon \triangleq(\operatorname{Id}-H) \epsilon .
$$

So suggestion for resampling (see e.g Davison-Hinkley '97, many others): use

$$
\tilde{e}_{i}=\frac{e_{i}}{\sqrt{1-H_{i, i}}}, H=X\left(X^{\top} X\right)^{-1} X^{\top}
$$

In low-dimension, this correction is minimal; in high-d, Gaussian case, $H_{i, i} \simeq 1-\frac{p}{n}$: non-negligible correction

Bootstrapping from the standardized residuals

 $\epsilon_{i} \stackrel{\text { iid }}{\sim} \mathcal{N}(0,1)$
(a) L_{1} loss

(b) Huber loss

(c) L_{2} loss

Figure: Performance of 95% confidence intervals of $\beta_{1}: n=500$, 1,000 simulations Method works for L_{2}; standardization for Huber (see McKean et al. '93) not effective.

Bootstrapping from the residuals

Can we understand situation? Reminders
Recall M-estimation problem above. Suppose $p / n \rightarrow \kappa \in(0,1)$. For simplicity of statement, X_{i} i.i.d with mean-0 i.i.d entries with many moments.

Bootstrapping from the residuals

Can we understand situation? Reminders

Recall M-estimation problem above. Suppose $p / n \rightarrow \kappa \in(0,1)$. For simplicity of statement, X_{i} i.i.d with mean- 0 i.i.d entries with many moments.

Theorem

Under regularity conditions on $\left\{\epsilon_{i}\right\}$ and ρ (convex), $\left\|\widehat{\beta}_{\rho}-\beta_{0}\right\|_{2}$ is asymptotically deterministic. Call $r_{\rho}(\kappa)$ its limit and $\hat{\mathbf{z}}_{\epsilon}=\epsilon+r_{\rho}(\kappa) Z$, where $Z \sim \mathcal{N}(0,1)$, independent of ϵ. For c deterministic, we have

$$
\left\{\begin{aligned}
\mathbf{E}\left([\operatorname{prox}(c \rho)]^{\prime}\left(\hat{z}_{\epsilon}\right)\right) & =1-\kappa, \\
\kappa r_{\rho}^{2}(\kappa) & =\mathbf{E}\left(\left[\hat{z}_{\epsilon}-\operatorname{prox}(c \rho)\left(\hat{z}_{\epsilon}\right)\right]^{2}\right) .
\end{aligned}\right.
$$

By definition, (Moreau '65), for convex function f,

$$
\operatorname{prox}(f)(x)=\operatorname{argmin}_{y}\left(f(y)+\frac{1}{2}(x-y)^{2}\right) .
$$

Bootstrapping from residuals

On the residuals: reminders

Call $e_{i}=Y_{i}-\widehat{\beta}_{\rho}^{T} X_{i}$, the i-th residual. In the asymptotic limit,

$$
e_{i} \stackrel{\mathcal{L}}{=} \operatorname{prox}(c \rho)\left(\epsilon_{i}+r_{\rho}(\kappa) Z_{i}\right), Z_{i} \sim \mathcal{N}(0,1) \Perp \epsilon_{i}
$$

where $Z_{i} \sim \mathcal{N}(0,1)$ independent of ϵ_{i}.
(1) if $\rho(x)=x^{2} / 2, \operatorname{prox}(c \rho)[x]=\frac{x}{1+c}$; hence, here $\frac{1}{1+c}=1-\kappa$
(2) if $\rho(x)=|x|, \operatorname{prox}(c \rho)[x]=\operatorname{sgn}(x)(|x|-c)_{+}$

Comments:
(1) even in LS case, e_{i} 's do not have the right marginal distribution. However, only var (e_{i}) matters then... Hence, simple scaling works, though usual interpretation misleading/wrong

Bootstrapping from residuals

On the residuals: reminders

Call $e_{i}=Y_{i}-\widehat{\beta}_{\rho}^{T} X_{i}$, the i-th residual. In the asymptotic limit,

$$
e_{i} \stackrel{\mathcal{L}}{=} \operatorname{prox}(c \rho)\left(\epsilon_{i}+r_{\rho}(\kappa) Z_{i}\right), Z_{i} \sim \mathcal{N}(0,1) \Perp \epsilon_{i}
$$

where $Z_{i} \sim \mathcal{N}(0,1)$ independent of ϵ_{i}.
(1) if $\rho(x)=x^{2} / 2, \operatorname{prox}(c \rho)[x]=\frac{x}{1+c}$; hence, here $\frac{1}{1+c}=1-\kappa$
(2) if $\rho(x)=|x|, \operatorname{prox}(c \rho)[x]=\operatorname{sgn}(x)(|x|-c)_{+}$

Comments:
(1) even in LS case, e_{i} 's do not have the right marginal distribution. However, only var (e_{i}) matters then... Hence, simple scaling works, though usual interpretation misleading/wrong
(2) For other loss functions, clear that performance depends on more than a few moments, hence problems

Bootstrapping from residuals

On the residuals: reminders

Call $e_{i}=Y_{i}-\widehat{\beta}_{\rho}^{T} X_{i}$, the i-th residual. In the asymptotic limit,

$$
e_{i} \stackrel{\mathcal{L}}{=} \operatorname{prox}(c \rho)\left(\epsilon_{i}+r_{\rho}(\kappa) Z_{i}\right), Z_{i} \sim \mathcal{N}(0,1) \Perp \epsilon_{i}
$$

where $Z_{i} \sim \mathcal{N}(0,1)$ independent of ϵ_{i}.
(1) if $\rho(x)=x^{2} / 2, \operatorname{prox}(c \rho)[x]=\frac{x}{1+c}$; hence, here $\frac{1}{1+c}=1-\kappa$
(2) if $\rho(x)=|x|, \operatorname{prox}(c \rho)[x]=\operatorname{sgn}(x)(|x|-c)_{+}$

Comments:
(1) even in LS case, e_{j} 's do not have the right marginal distribution. However, only var (e_{i}) matters then... Hence, simple scaling works, though usual interpretation misleading/wrong
(2) For other loss functions, clear that performance depends on more than a few moments, hence problems
(3) Bickel-Freedman, '83, for OLS - answered a slightly different question

Bootstrapping from the residuals

Further comments

(1) Advocated for a long-time even in robust regression (e.g Shorack '81): clearly problematic here
(2) Many methods suggested in low-dimension to improve second order accuracy: see e.g Koenker ('05), Parzen et al. ('94), De Angelis et al. ('93), McKean et al. ('93); outside of L_{2}, these methods did not improve our numerical results
(3) So question: can we do better?

Bootstrapping from residuals
 \section*{A couple ideas}

Recall that in robust regression, asymptotically, in setting considered here:

$$
Y_{i}-X_{i}^{\top} \widehat{\beta}=\mathbf{e}_{\mathbf{i}} \stackrel{\mathcal{L}}{=} \operatorname{prox}(c \rho)\left(\epsilon_{i}+r_{\rho}(\kappa) Z_{i}\right), Z_{i} \sim \mathcal{N}(0,1) \Perp \epsilon_{i}
$$

$\operatorname{prox}(c \rho)$ problematic: so instead, use as basis of work

$$
\begin{aligned}
\tilde{e}_{i,(i)} & =Y_{i}-X_{i}^{T} \widehat{\beta}_{(i)}=\epsilon_{i}+X_{i}^{T}\left(\beta_{0}-\widehat{\beta}_{(i)}\right), \text { because } \\
e_{i} & =\operatorname{prox}(c \rho)\left(\tilde{e}_{i,(i)}\right) .
\end{aligned}
$$

where $\widehat{\beta}_{(i)}$ is leave- i-th-observation out estimate. Remarks:

- Stochastic structure of $\tilde{e}_{i,(i)}$ comparatively simpler than that of e_{i}

Bootstrapping from residuals
 \section*{A couple ideas}

Recall that in robust regression, asymptotically, in setting considered here:

$$
Y_{i}-X_{i}^{\top} \widehat{\beta}=\mathbf{e}_{\mathbf{i}} \stackrel{\mathcal{L}}{=} \operatorname{prox}(c \rho)\left(\epsilon_{i}+r_{\rho}(\kappa) Z_{i}\right), Z_{i} \sim \mathcal{N}(0,1) \Perp \epsilon_{i}
$$

prox $(c \rho)$ problematic: so instead, use as basis of work

$$
\begin{aligned}
\tilde{e}_{i,(i)} & =Y_{i}-X_{i}^{\top} \widehat{\beta}_{(i)}=\epsilon_{i}+X_{i}^{\top}\left(\beta_{0}-\widehat{\beta}_{(i)}\right), \text { because } \\
e_{i} & =\operatorname{prox}(c \rho)\left(\tilde{e}_{i,(i)}\right) .
\end{aligned}
$$

where $\widehat{\beta}_{(i)}$ is leave- i-th-observation out estimate. Remarks:

- Stochastic structure of $\tilde{e}_{i,(i)}$ comparatively simpler than that of e_{i}
- Problem 1 with $\tilde{e}_{i,(i)}$: excess variance compared to ϵ_{i}

Bootstrapping from residuals
 A couple ideas

Recall that in robust regression, asymptotically, in setting considered here:

$$
Y_{i}-X_{i}^{T} \widehat{\beta}=\mathbf{e}_{\mathbf{i}} \stackrel{\mathcal{L}}{=} \operatorname{prox}(c \rho)\left(\epsilon_{i}+r_{\rho}(\kappa) Z_{i}\right), Z_{i} \sim \mathcal{N}(0,1) \Perp \epsilon_{i}
$$

$\operatorname{prox}(c \rho)$ problematic: so instead, use as basis of work

$$
\begin{aligned}
\tilde{e}_{i,(i)} & =Y_{i}-X_{i}^{\top} \widehat{\beta}_{(i)}=\epsilon_{i}+X_{i}^{\top}\left(\beta_{0}-\widehat{\beta}_{(i)}\right), \text { because } \\
e_{i} & =\operatorname{prox}(c \rho)\left(\tilde{e}_{i,(i)}\right) .
\end{aligned}
$$

where $\widehat{\beta}_{(i)}$ is leave- i-th-observation out estimate. Remarks:

- Stochastic structure of $\tilde{e}_{i,(i)}$ comparatively simpler than that of e_{i}
- Problem 1 with $\tilde{e}_{i,(i)}$: excess variance compared to ϵ_{i}
- Problem 2 with $\tilde{e}_{i,(i)}$: extra "Gaussian" component

Bootstrapping the residuals

Idea: resample from $\tilde{e}_{i,(i)}$ but properly scale them. Need at least right variance...
How to do so?
(1) Estimate $\sigma^{2}(\epsilon)$ using least squares: easy to get consistent estimator in high-dimension for that
(2) Easy to get estimate of $\left\|\left(\beta_{0}-\widehat{\beta}_{(i)}\right)\right\|$ then.
(3) Normalize $e_{i,(i)}$ to $\tilde{e}_{i,(i)}$ so variance of the latter is $\widehat{\sigma}(\epsilon)$.
(4) Use $\tilde{e}_{i,(i)}$ in bootstrap resampling

Bootstrapping the residuals

Approach 1: scaling predicted errors; $\epsilon_{i}{ }^{\text {idd }} \sim$ double exponential

(a) L_{1} loss

(b) Huber loss

Figure: Bootstrap based on predicted errors: We plotted the error rate of 95% confidence intervals for alternative bootstrap methods: bootstrapping from standardized predicted errors (blue) and from deconvolution of predicted error (magenta).

Further bootstraps

Conclusion about bootstrapping residuals:
(1) Need to be careful - in general not accurate/can fail
(2) Anti-conservative in general: Cl do not cover the true value with the probability we want
(3) Appears possible to fix to a certain/large extent the problems

Another type of bootstrap

 Resampling the pairsWill now discuss another type of bootstrap: pairs-resampling

Another type of bootstrap

 Resampling the pairsWill now discuss another type of bootstrap: pairs-resampling In standard books, this is the technique that is favored in general.
Idea:

- For $b=1, \ldots, B$, sample with replacement from $\left(X_{i}, Y_{i}\right)_{i=1}^{n}$.
- Get new dataset $\left(X_{i, b}^{*}, Y_{i, b}^{*}\right)_{i=1}^{n}$
- Fit model to this new dataset to get $\left\{\widehat{\beta}_{b}^{*}\right\}_{b=1}^{B}$

Do inference using $\left\{\widehat{\beta}_{b}^{*}\right\}_{b=1}^{B}$

Pairs bootstrap

More details

Note that, if $w_{i, b}^{*}$ is number of times $\left(X_{i}, Y_{i}\right)$ appears in b-th boot sample:

$$
\widehat{\beta}_{b}^{*}=\operatorname{argmin}_{\beta \in \mathbb{R}^{p}} \sum_{i=1}^{n} w_{i, b}^{*} \rho\left(Y_{i}-X_{i}^{T} \beta\right) .
$$

Pairs bootstrap

More details

Note that, if $w_{i, b}^{*}$ is number of times $\left(X_{i}, Y_{i}\right)$ appears in b-th boot sample:

$$
\widehat{\beta}_{b}^{*}=\operatorname{argmin}_{\beta \in \mathbb{R}^{p}} \sum_{i=1}^{n} w_{i, b}^{*} \rho\left(Y_{i}-X_{i}^{\top} \beta\right)
$$

Potential problems :
(1) Number of distinct pairs $\left\{\left(X_{i}, Y_{i}\right)\right\}$ in bootstrapped sample is roughly $(1-1 / e) n$. Problem if $p>(1-1 / e) n$

Pairs bootstrap

More details

Note that, if $w_{i, b}^{*}$ is number of times $\left(X_{i}, Y_{i}\right)$ appears in b-th boot sample:

$$
\widehat{\beta}_{b}^{*}=\operatorname{argmin}_{\beta \in \mathbb{R}^{p}} \sum_{i=1}^{n} w_{i, b}^{*} \rho\left(Y_{i}-X_{i}^{\top} \beta\right) .
$$

Potential problems :
(1) Number of distinct pairs $\left\{\left(X_{i}, Y_{i}\right)\right\}$ in bootstrapped sample is roughly $(1-1 / e) n$. Problem if $p>(1-1 / e) n$
(2) Understood in NEK et al. '11 that weighted robust regression has very different statistical properties than unweighted; measure concentration

Pairs bootstrap

More details

Note that, if $w_{i, b}^{*}$ is number of times $\left(X_{i}, Y_{i}\right)$ appears in b-th boot sample:

$$
\widehat{\beta}_{b}^{*}=\operatorname{argmin}_{\beta \in \mathbb{R}^{p}} \sum_{i=1}^{n} w_{i, b}^{*} \rho\left(Y_{i}-X_{i}^{\top} \beta\right)
$$

Potential problems :
(1) Number of distinct pairs $\left\{\left(X_{i}, Y_{i}\right)\right\}$ in bootstrapped sample is roughly $(1-1 / e) n$. Problem if $p>(1-1 / e) n$
(2) Understood in NEK et al. '11 that weighted robust regression has very different statistical properties than unweighted; measure concentration
(3) RM point of view: least squares: $X_{i} \rightarrow \sqrt{w_{i, b}^{*}} X_{i}$: move from "Gaussian to elliptical".

Pairs bootstrap

More details

Note that, if $w_{i, b}^{*}$ is number of times $\left(X_{i}, Y_{i}\right)$ appears in b-th boot sample:

$$
\widehat{\beta}_{b}^{*}=\operatorname{argmin}_{\beta \in \mathbb{R}^{p}} \sum_{i=1}^{n} w_{i, b}^{*} \rho\left(Y_{i}-X_{i}^{\top} \beta\right) .
$$

Potential problems :
(1) Number of distinct pairs $\left\{\left(X_{i}, Y_{i}\right)\right\}$ in bootstrapped sample is roughly $(1-1 / e) n$. Problem if $p>(1-1 / e) n$
(2) Understood in NEK et al. ' 11 that weighted robust regression has very different statistical properties than unweighted; measure concentration
(3) RM point of view: least squares: $X_{i} \rightarrow \sqrt{w_{i, h}^{*}} X_{i}$: move from "Gaussian to elliptical".
(1) "Reweighting changes the effective geometry of the dataset": so potentially problematic here

Pairs bootstrap

More details

Note that, if $w_{i, b}^{*}$ is number of times $\left(X_{i}, Y_{i}\right)$ appears in b-th boot sample:

$$
\widehat{\beta}_{b}^{*}=\operatorname{argmin}_{\beta \in \mathbb{R}^{p}} \sum_{i=1}^{n} w_{i, b}^{*} \rho\left(Y_{i}-X_{i}^{\top} \beta\right) .
$$

Potential problems :
(1) Number of distinct pairs $\left\{\left(X_{i}, Y_{i}\right)\right\}$ in bootstrapped sample is roughly $(1-1 / e) n$. Problem if $p>(1-1 / e) n$
(2) Understood in NEK et al. ' 11 that weighted robust regression has very different statistical properties than unweighted; measure concentration
(3) RM point of view: least squares: $X_{i} \rightarrow \sqrt{w_{i, b}^{*}} X_{i}$: move from "Gaussian to elliptical".
(0) "Reweighting changes the effective geometry of the dataset": so potentially problematic here
(0) Note however that reweighting also affects ϵ_{i} 's

Pairs bootstrap

How does it fare?

Figure: Comparison of width of 95% confidence intervals of β_{1} for L_{2} loss: y-axis is the percent increase of the average confidence interval width based on simulation ($n=500$), as compared to the average for the standard confidence interval based on normal theory in L_{2}; the percent increase is plotted against the ratio $\kappa=p / n$ (x-axis)

Pairs bootstrapping

Some theory

Theorem

Weights $\left(w_{i}\right)_{i=1}^{n}$ be i.i.d., $\mathbf{E}\left(w_{i}\right)=1$; enough moments and bounded away from $0 . X_{i} \stackrel{i i d}{\sim} \mathcal{N}\left(0, \operatorname{Id}_{p}\right) ; v:$ deterministic unit vector.
Suppose $\widehat{\beta}$ is obtained by solving a least-squares problem linear model holds; $\operatorname{var}\left(\epsilon_{i}\right)=\sigma_{\epsilon}^{2}$
If $\lim p / n=\kappa<1$ then asymptotically as $n \rightarrow \infty$

$$
p \mathbf{E}\left(\operatorname{var}\left(v^{\top} \widehat{\beta}_{w}^{*}\right)\right) \rightarrow \sigma_{\epsilon}^{2}\left[\kappa \frac{1}{1-\kappa-\mathbf{E}\left(\frac{1}{\left(1+c w_{i}\right)^{2}}\right)}-\frac{1}{1-\kappa}\right]
$$

c : unique solution of

$$
\mathbf{E}\left(\frac{1}{1+C w_{i}}\right)=1-\kappa
$$

Pairs bootstrapping
 A comment

Note that of course in setup above,

$$
p \operatorname{var}\left(v^{T} \widehat{\beta}\right) \rightarrow \sigma_{\epsilon}^{2} \frac{\kappa}{1-\kappa}
$$

(1) Pairs-bootstrap does not get the right variance
(2) Confidence intervals are too wide: method is conservative (covers the truth more often than it should)
(3) Ratio $\mathbf{E}\left(\operatorname{var}\left(v^{\top} \widehat{\beta}_{w}^{*}\right)\right) / \operatorname{var}\left(v^{\top} \widehat{\beta}\right)$ does not depend on $\operatorname{cov}\left(X_{i}\right)=\Sigma$ - results true for any Σ
(4) Suggest weight corrections (not discussed because of time constraints)

Pairs bootstrapping

Numerics

(a) L_{2} (Theoretical)

Figure: Factor by which standard pairs bootstrap over-estimates the variance: Gaussian design, Gaussian errors

Pairs bootstrapping

Numerics

(a) L_{2} (Theoretical)

(b) All (Simulated)

Figure: Factor by which standard pairs bootstrap over-estimates the variance: Gaussian design, Gaussian errors

Beyond regression problems

Are these issues limited to the simple setting of regression?

Another type of statistics: eigenvalues of covariance matrices

Sample covariance matrices and their eigenvalues

Recall if data is X_{i},

$$
\widehat{\Sigma}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(X_{i}-\bar{X}\right)^{T}
$$

Bootstrap quite widely used to assess fluctuation behavior of eigenvalues of sample covariance matrices. See Beran and Srivastava ('85), Eaton and Tyler ('91)

Sample covariance matrices and their eigenvalues

Recall if data is X_{i},

$$
\widehat{\Sigma}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(X_{i}-\bar{X}\right)^{T} .
$$

Bootstrap quite widely used to assess fluctuation behavior of eigenvalues of sample covariance matrices. See Beran and Srivastava ('85), Eaton and Tyler ('91)
In context of p fixed and $n \rightarrow \infty$, showed that when Σ has eigenvalues of multiplicity 1 , bootstrap works.

Sample covariance matrices and their eigenvalues

Recall if data is X_{i},

$$
\widehat{\Sigma}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(X_{i}-\bar{X}\right)^{T}
$$

Bootstrap quite widely used to assess fluctuation behavior of eigenvalues of sample covariance matrices. See Beran and Srivastava ('85), Eaton and Tyler ('91)
In context of p fixed and $n \rightarrow \infty$, showed that when Σ has eigenvalues of multiplicity 1 , bootstrap works. Fails when eigenvalues have multiplicity higher than 1.

Sample covariance matrices and their eigenvalues

Recall if data is X_{i},

$$
\widehat{\Sigma}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(X_{i}-\bar{X}\right)^{T}
$$

Bootstrap quite widely used to assess fluctuation behavior of eigenvalues of sample covariance matrices. See Beran and Srivastava ('85), Eaton and Tyler ('91)
In context of p fixed and $n \rightarrow \infty$, showed that when Σ has eigenvalues of multiplicity 1 , bootstrap works. Fails when eigenvalues have multiplicity higher than 1. Can use subsampling to fix the problem.

Sample covariance matrices and their eigenvalues

Recall if data is X_{i},

$$
\widehat{\Sigma}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(X_{i}-\bar{X}\right)^{T}
$$

Bootstrap quite widely used to assess fluctuation behavior of eigenvalues of sample covariance matrices. See Beran and Srivastava ('85), Eaton and Tyler ('91)
In context of p fixed and $n \rightarrow \infty$, showed that when Σ has eigenvalues of multiplicity 1 , bootstrap works. Fails when eigenvalues have multiplicity higher than 1. Can use subsampling to fix the problem.
Bootstrapping eigenvalues currently used in a number of fields (see e.g several papers in British Journal of Psychology '07) Now question: is that true if $p / n \rightarrow c \neq 0$?

Classic results

Recall

Theorem (Johnstone ('01))

If X_{i} are i.i.d $\mathcal{N}\left(0, \mathrm{Id}_{p}\right)$, then as $p / n \rightarrow \gamma \in(0, \infty)$

$$
n^{2 / 3} \frac{\lambda_{\max }(\hat{\Sigma})-(1+\sqrt{p / n})^{2}}{\sigma_{n, p}} \Rightarrow T W_{1} .
$$

Further results: phase transition at $\lambda_{1}(\Sigma)=1+\sqrt{p / n}$ (BBP, '04); general Σ case ($\mathrm{N}_{2} \mathrm{EK}$, '05; Lee and Schnelli '13). Much work since then.

Classic results

Recall

Theorem (Johnstone ('01))

If X_{i} are i.i.d $\mathcal{N}\left(0, \mathrm{Id}_{p}\right)$, then as $p / n \rightarrow \gamma \in(0, \infty)$

$$
n^{2 / 3} \frac{\lambda_{\max }(\widehat{\Sigma})-(1+\sqrt{p / n})^{2}}{\sigma_{n, p}} \Rightarrow T W_{1} .
$$

Further results: phase transition at $\lambda_{1}(\Sigma)=1+\sqrt{p / n}$ (BBP, '04); general Σ case ($\mathrm{N}_{2} \mathrm{EK}$, '05; Lee and Schnelli '13). Much work since then.
Also classic work (Marcenko-Pastur ('67), Wachter ('78)) about empirical spectral distribution of eigenvalues

Eigenvalues
 Numerics: bias

Figure: Bias of Largest Bootstrap Eigenvalue, $\mathbf{n = 1 , 0 0 0}$: Plotted are boxplots of the difference of the average bootstrap value of λ_{1} over 999 bootstrap samples, minus the estimate $\hat{\lambda}_{1}$ over 1000 simulations; $\bar{\lambda}_{1}^{*}-\hat{\lambda}_{1}$ is also the standard bootstrap estimate of bias.

Eigenvalues
 Numerics: variance

Figure: Ratio of Bootstrap Estimate of Variance to True Variance for Largest Eigenvalue, $\mathbf{n = 1 , 0 0 0}$: Plotted are boxplots of the bootstrap estimate of variance $(B=999)$ as a ratio of the true variance of $\hat{\lambda}_{1}$; boxplots represent the bootstrap estimate of variance

Eigenvalues

Numerics: distribution in null case

(a) $Z \sim$ Normal, r=0.01
(c) $Z \sim$ Ellip. Exp,
$r=0.01$
(b) $Z \sim$ Normal, $r=0.3$

(d) $Z \sim$ Ellip. Exp, $r=0.3$

- Simple theory for well separated eigenvalues
- Possible to do theory of spectral distribution of eigenvalues: Results are negative: bootstrapped Stieltjes transform concentrates but around the "wrong" Stieltjes transform.
- Can be used (with a few more refined tools) to understand bootstrap bias

Conclusions

Bootstrap :

- Standard techniques/intuition do not perform well (jackknife)

Conclusions

Bootstrap :

- Standard techniques/intuition do not perform well (jackknife)
- Caveat: resampling from scaled residuals work for least-squares (but do we need it in our context?)

Conclusions

Bootstrap :

- Standard techniques/intuition do not perform well (jackknife)
- Caveat: resampling from scaled residuals work for least-squares (but do we need it in our context?)
- Hinted at possible fixes for in robust-regression setups

Conclusions

Bootstrap :

- Standard techniques/intuition do not perform well (jackknife)
- Caveat: resampling from scaled residuals work for least-squares (but do we need it in our context?)
- Hinted at possible fixes for in robust-regression setups
- Main Problem: we do not know in what direction standard bootstrap has issues... Beyond our simple examples, what about truly complicated applied setups?

Conclusions

Bootstrap :

- Standard techniques/intuition do not perform well (jackknife)
- Caveat: resampling from scaled residuals work for least-squares (but do we need it in our context?)
- Hinted at possible fixes for in robust-regression setups
- Main Problem: we do not know in what direction standard bootstrap has issues... Beyond our simple examples, what about truly complicated applied setups?
- Slightly more complicated problem of eigenvalues results in severe problems... unless the problem is effectively low-d and trivial

Conclusions

Bootstrap :

- Standard techniques/intuition do not perform well (jackknife)
- Caveat: resampling from scaled residuals work for least-squares (but do we need it in our context?)
- Hinted at possible fixes for in robust-regression setups
- Main Problem: we do not know in what direction standard bootstrap has issues... Beyond our simple examples, what about truly complicated applied setups?
- Slightly more complicated problem of eigenvalues results in severe problems... unless the problem is effectively low-d and trivial
- Seems bootstrap genuinely perturbation-analytic method

Conclusions

Bootstrap :

- Standard techniques/intuition do not perform well (jackknife)
- Caveat: resampling from scaled residuals work for least-squares (but do we need it in our context?)
- Hinted at possible fixes for in robust-regression setups
- Main Problem: we do not know in what direction standard bootstrap has issues... Beyond our simple examples, what about truly complicated applied setups?
- Slightly more complicated problem of eigenvalues results in severe problems... unless the problem is effectively low-d and trivial
- Seems bootstrap genuinely perturbation-analytic method
- Large n, p theory seems to capture some phenomena observed in practice - may lead to a practically informative theory.

Bon anniversaire!

Bon anniversaire!

Bon anniversaire!

Robust regression estimator

Impact of error distribution

(a)

Figure: Solid line: Relative Risk of $\widehat{\beta}$ for scaled predicted errors vs original errors - population version

Figure: Solid line: Relative Risk of $\widehat{\beta}$ for scaled predicted errors vs original errors - population version Dotted line: using $\eta_{i} \stackrel{i i d}{\sim} \mathcal{N}\left(0, \sigma_{\epsilon}^{2}\right)$

