A few remarks on the bootstrap

For some moderately difficult statistical problems (a.k.a. in moderate and high dimensions)

N₂ El Karoui (joint with Elizabeth Purdom)

Department of Statistics + Criteo Al Lab UC, Berkeley + Paris/Palo Alto

N. El Karoui's 3x25 birthday conference May 2019

What is the bootstrap?

Bootstrap (Efron, '79): care about statistic $\widehat{\theta}_n$; would like to know its law. Can we do this from the data/sample we observe? Example: sample mean; suppose we have data X_1, \ldots, X_n , i.i.d, $X_i \in \mathbb{R}$. **E** $(X_i) = \mu$, $\text{var}(X_i) = \sigma^2$; interested in

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i .$$

What is the bootstrap?

Bootstrap (Efron, '79): care about statistic $\widehat{\theta}_n$; would like to know its law. Can we do this from the data/sample we observe? Example: sample mean; suppose we have data X_1, \ldots, X_n , i.i.d, $X_i \in \mathbb{R}$. **E** $(X_i) = \mu$, $\operatorname{var}(X_i) = \sigma^2$; interested in

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i .$$

Want to create a confidence interval for μ , the mean of X_i .

What is the bootstrap?

Bootstrap (Efron, '79): care about statistic $\widehat{\theta}_n$; would like to know its law. Can we do this from the data/sample we observe? Example: sample mean; suppose we have data X_1, \ldots, X_n , i.i.d, $X_i \in \mathbb{R}$. **E** $(X_i) = \mu$, $\operatorname{var}(X_i) = \sigma^2$; interested in

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i .$$

Want to create a confidence interval for μ , the mean of X_i .

• Option 1: law of $\widehat{\theta}_n = \overline{X}_n$? Central limit theorem:

$$\sqrt{n}\frac{\bar{X}_n-\mu}{\sigma}\Longrightarrow \mathcal{N}(0,1)$$
.

100 (1- α)%CI: $\bar{X}_n \pm \frac{\sigma}{\sqrt{n}} z_{1-\alpha/2}$; t-distribution variants

Option 2: bootstrap

Bootstrap

More details in the case of sample mean

Idea: from the original sample, create lots of "new" datasets; this should mimick sampling mechanism which gave us \bar{X}_n from population distribution

In more detail:

• For $b = 1, \dots, B$, repeat:

In more detail:

- For $b = 1, \ldots, B$, repeat:
- Sample n times with replacement from $\{X_i\}_{i=1}^n$, to get dataset $D_b = \{X_{1,b}^*, \dots, X_{n,b}^*\}$.

In more detail:

- For $b = 1, \dots, B$, repeat:
- Sample n times with replacement from $\{X_i\}_{i=1}^n$, to get dataset $D_b = \{X_{1,b}^*, \dots, X_{n,b}^*\}$.
- Compute $\bar{X}_{n,b}^* = \frac{1}{n} \sum_{i=1}^n X_{i,b}^*$

In more detail:

- For $b = 1, \dots, B$, repeat:
- Sample n times with replacement from $\{X_i\}_{i=1}^n$, to get dataset $D_b = \{X_{1,b}^*, \dots, X_{n,b}^*\}$.
- Compute $\bar{X}_{n,b}^* = \frac{1}{n} \sum_{i=1}^n X_{i,b}^*$

In more detail:

- For $b = 1, \dots, B$, repeat:
- Sample n times with replacement from $\{X_i\}_{i=1}^n$, to get dataset $D_b = \{X_{1,b}^*, \dots, X_{n,b}^*\}$.
- Compute $\bar{X}_{n,b}^* = \frac{1}{n} \sum_{i=1}^n X_{i,b}^*$

Now use $\{\bar{X}_{n,b}^*\}_{b=1}^B$ as approximation of distribution of \bar{X}_n

In more detail:

- For $b = 1, \dots, B$, repeat:
- Sample n times with replacement from $\{X_i\}_{i=1}^n$, to get dataset $D_b = \{X_{1,b}^*, \dots, X_{n,b}^*\}$.
- Compute $\bar{X}_{n,b}^* = \frac{1}{n} \sum_{i=1}^n X_{i,b}^*$

Now use $\{\bar{X}_{n,b}^*\}_{b=1}^B$ as approximation of distribution of \bar{X}_n In particular, 95% CI could be, if $\bar{X}_{n,(k)}$ are increasingly ordered values of $\{\bar{X}_{n,b}\}_{b=1}^B$

$$(\bar{X}_{n,(2.5\%*B)}^*, \bar{X}_{n,(97.5\%*B)}^*)$$
 .

So called bootstrap percentile interval; simple computation shows asymptotically valid

Of course use it for much more complicated statistics

P: data generating distribution. Empirical distribution:

$$\hat{P}_n = \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$$

Let θ be a functional of those distributions: e.g $\theta(P)$: median or trimmed mean of population

Often: use $\theta(\hat{P}_n)$ to get confidence interval/statement about $\theta(P)$.

Question e.g.:

(Asymptotic) law of
$$\theta(\hat{P}_n) - \theta(P)$$
?

P: data generating distribution. Empirical distribution:

$$\hat{P}_n = \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$$

Let θ be a functional of those distributions: e.g $\theta(P)$: median or trimmed mean of population

Often: use $\theta(\hat{P}_n)$ to get confidence interval/statement about $\theta(P)$.

Question e.g.:

(Asymptotic) law of
$$\theta(\hat{P}_n) - \theta(P)$$
?

bootstrap: if \hat{P}_n^* is bootstrapped version of \hat{P}_n ,

Bootstrap law of
$$[\theta(\hat{P}_n^*) - \theta(\hat{P}_n)]$$
 " \simeq " Law of $[\theta(\hat{P}_n) - \theta(P)]$?

Left-hand side: we can "resample" the data to get this Righ-hand side: ideally, we would like to know it, but not accessible

Suppose we are interested in random variable

$$\widehat{\theta}(\hat{P}_n, P)$$
 and its law $\mathcal{L}_n(\widehat{\theta}(\hat{P}_n, P))$

E.g
$$\widehat{\theta}(\widehat{P}_n, P) = \sqrt{n}(\mu(\widehat{P}_n) - \mu(P))$$

Suppose

$$\mathcal{L}_n(\widehat{\theta}(\widehat{P}_n, P)) \Longrightarrow \mathcal{L}$$

Call $\mathcal{L}_{n,boot}(\hat{P}_n)$ the conditional law of $\widehat{\theta}(\hat{P}_n^*, \hat{P}_n)|\hat{P}_n$ Then bootstrap works if, e.g,

$$\lim_{n\to\infty} d(\mathcal{L}_{n,boot}(\hat{P}_n),\mathcal{L})\to 0 \ , \text{a.s.} \ X_1,\dots,X_n,\dots$$

where d: distance between probability measures; alternative: convergence in probability

Suppose we are interested in random variable

$$\widehat{\theta}(\hat{P}_n, P)$$
 and its law $\mathcal{L}_n(\widehat{\theta}(\hat{P}_n, P))$

E.g
$$\widehat{\theta}(\widehat{P}_n, P) = \sqrt{n}(\mu(\widehat{P}_n) - \mu(P))$$

Suppose

$$\mathcal{L}_n(\widehat{\theta}(\hat{P}_n, P)) \Longrightarrow \mathcal{L}$$

Call $\mathcal{L}_{n,boot}(\hat{P}_n)$ the conditional law of $\hat{\theta}(\hat{P}_n^*, \hat{P}_n)|\hat{P}_n|$ Then bootstrap works if, e.g.,

$$\lim_{n\to\infty} d(\mathcal{L}_{n,boot}(\hat{P}_n),\mathcal{L})\to 0 \ , \text{a.s.} \ X_1,\dots,X_n,\dots$$

where *d*: distance between probability measures; alternative: convergence in probability

Example: X_i i.i.d mean μ , $cov(X_i) = \Sigma$, then conditionally on

$$X_1,\ldots,X_n$$

$$\sqrt{n}(\bar{X}_n^* - \bar{X}_n) \Longrightarrow \mathcal{N}(0, \Sigma)$$

for almost every sequence X_1, \ldots, X_n, \ldots

Bootstrap: brilliant idea, **huge** impact for applied, methodological and theoretical statistics; probably one of the most widely used tool in applied statistics

Everything seems possible; no need for asymptotics. Now, beside stat practice, very useful in teaching data science and inferential ideas.

Bootstrap: brilliant idea, **huge** impact for applied, methodological and theoretical statistics; probably one of the most widely used tool in applied statistics

Everything seems possible; no need for asymptotics. Now, beside stat practice, very useful in teaching data science and inferential ideas.

Theory started almost immediately: Bickel-Freedman (AoS, '81) first fairly general paper.

Lots of activity both practical and theoretical for 30+ years

Bootstrap: brilliant idea, **huge** impact for applied, methodological and theoretical statistics; probably one of the most widely used tool in applied statistics

Everything seems possible; no need for asymptotics. Now, beside stat practice, very useful in teaching data science and inferential ideas.

Theory started almost immediately: Bickel-Freedman (AoS, '81) first fairly general paper.

Lots of activity both practical and theoretical for 30+ years Standard books: Davison-Hinkley (applied/theory), Hall (mostly theory), Politis-Romano-Wolf (subsampling)

And lots of variants of bootstrap (e.g m-out-of-n bootstrap (Bickel et al.), various other subsampling methods...)
Other old techniques discussed later

Bootstrap: brilliant idea, **huge** impact for applied, methodological and theoretical statistics; probably one of the most widely used tool in applied statistics

Everything seems possible; no need for asymptotics. Now, beside stat practice, very useful in teaching data science and inferential ideas.

Theory started almost immediately: Bickel-Freedman (AoS, '81) first fairly general paper.

Lots of activity both practical and theoretical for 30+ years Standard books: Davison-Hinkley (applied/theory), Hall (mostly theory), Politis-Romano-Wolf (subsampling)

And lots of variants of bootstrap (e.g m-out-of-n bootstrap (Bickel et al.), various other subsampling methods...)

Other old techniques discussed later

One big question: when does it work?

Bootstrap

When does it work? 1-dimensional case

Example where it does not work: $X_i \stackrel{iid}{\backsim} Unif[0, a]$, distribution of the $(a - \max X_i)$

Bootstrap

When does it work? 1-dimensional case

Example where it does not work: $X_i \stackrel{iid}{\backsim} Unif[0, a]$, distribution of the $(a - \max X_i)$

Essentially, need the function θ to be "smooth" enough. Formal results on next slide. Informally: von Mises calculus: θ differentiable implies: if $\theta'(\cdot; P)$ is linear

$$\theta(\hat{P}_n) - \theta(P) \simeq \frac{1}{\sqrt{n}} \theta'(G_n; P) ,$$

where $G_n = \sqrt{n}(\hat{P}_n - P)$ (Donsker thm: limit of G_n is (P-)Brownian bridge)

When does it work? 1-dimensional case

Example where it does not work: $X_i \stackrel{iid}{\backsim} Unif[0, a]$, distribution of the $(a - \max X_i)$

Essentially, need the function θ to be "smooth" enough. Formal results on next slide. Informally: von Mises calculus: θ differentiable implies: if $\theta'(\cdot; P)$ is linear

$$\theta(\hat{P}_n) - \theta(P) \simeq \frac{1}{\sqrt{n}} \theta'(G_n; P) ,$$

where $G_n = \sqrt{n}(\hat{P}_n - P)$ (Donsker thm: limit of G_n is (P-)Brownian bridge)

Bootstrap: expand $\theta(\hat{P}_n^*)$ around $\theta(P)$ + linearity to get:

$$\theta(\hat{P}_n^*) - \theta(\hat{P}_n) \simeq \frac{1}{\sqrt{n}} \theta'(G_n^*; P) ,$$

 $G_n^* = \sqrt{n}(\hat{P}_n^* - \hat{P}_n)$; G_n^* also has P-Brownian bridge as limit

Look at θ as mapping from $(D[-\infty,\infty],\|\cdot\|_{\infty}) \to \mathbb{R}$, where D càdlàg/rcll functions. If θ Hadamard differentiable, i.e

$$\left| rac{ heta(F+th_t) - heta(F)}{t} - heta'(h;F)
ight| o 0,$$
 as $t o 0^+, orall h_t: \sup_{x \in \mathbb{R}} |h_t(x) - h(x)| o 0$.

 $\theta'(\cdot; F)$: continuous linear map, $(D, \|\cdot\|_{\infty}) \mapsto \mathbb{R}$.

Then bootstrap works.

Then not much need to understand fluctuation properties of $\theta(\hat{P}_n)$: resampling does it for us.

Often summarized as: "bootstrap works for smooth statistics"

Plan for rest of talk

Work in the high-dimensional case: data vectors $\{X_i\}_{i=1}^n \in \mathbb{R}^p$, $p/n \to \kappa \in (0,1)$

Arguments above (proximity of empirical and population distribution) fail; but what about bootstrap?

- Bootstrapping (robust) regression: review
- Bootstrapping regression in high-dimension: results
- RM issues in bootstrap

Why p/n not close to 0?

Plan for rest of talk

Work in the high-dimensional case: data vectors $\{X_i\}_{i=1}^n \in \mathbb{R}^p$, $p/n \to \kappa \in (0,1)$

Arguments above (proximity of empirical and population distribution) fail; but what about bootstrap?

- Bootstrapping (robust) regression: review
- Bootstrapping regression in high-dimension: results
- RM issues in bootstrap

Why p/n not close to 0? 1) often better small sample approximations; 2) often allows comparison of methods at 1st order and not second order; so more dramatic differencing of methods - often consistent with practical knowledge 3) power series vs 1st order approximation 4) problems statistically non-trivial

Review: How to bootstrap in regression?

Motto: copy the data-generating distribution.

Model: $Y_i \in \mathbb{R}, X_i \in \mathbb{R}^p$,

$$Y_i = X_i^T \beta_0 + \epsilon_i , 1 \le i \le n .$$

For ρ loss function, consider

$$\widehat{\beta}_{\rho} = \operatorname{argmin}_{\beta \in \mathbb{R}^p} \sum_{i=1}^n \rho(Y_i - X_i^T \beta) .$$

Simplest question: can get CI for $\beta_0(1)$ based on $\widehat{\beta}_{\rho}(1)$?

Review: How to bootstrap in regression?

Bootstrapping from residuals

Motto: copy the data-generating process.

Model: $Y_i \in \mathbb{R}$, $X_i \in \mathbb{R}^p$,

$$Y_i = X_i^T \beta_0 + \epsilon_i , 1 \le i \le n .$$

What's random? ϵ_i in this context; they are i.i.d.

 X_i assumed "fixed" in this example.

So bootstrap from the residuals:

- estimate β_0 by $\widehat{\beta}_{\rho}$
- **2** estimate ϵ_i by e_i 's; typically $e_i = Y_i X_i^T \widehat{\beta}$
- **3** Repeat for $b = 1, \ldots, B$
 - Get new errors $e_{i,b}^*$ by sampling i.i.d at random from $\{e_i\}_{i=1}^n$
 - **2** Get new dataset $Y_{i,b}^* = X_i^T \widehat{\beta} + e_{i,b}^*$
 - **3** Fit this new dataset to get $\widehat{\beta}_b^*$

Do inference using $\{\widehat{\beta}_b^*\}_{b=1}^B$

 $\epsilon_i \stackrel{iid}{\backsim} \mathcal{N}(0,1)$

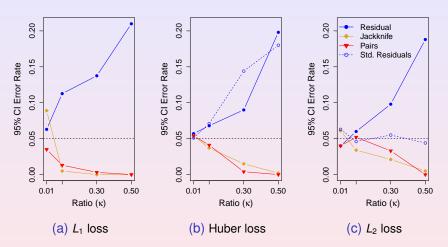


Figure: Performance of 95% confidence intervals of β_1 : n = 500, 1,000 simulations Residuals method is anti-conservative!

Understanding and fixing(?) the problem

Note: Bickel and Freedman ('83) studied high-dimensional residual bootstrap for least-squares; showed that residuals did not have the right distribution. Mammen ('89) for robust regression when $p^2/n \to 0$

Understanding and fixing(?) the problem

Note: Bickel and Freedman ('83) studied high-dimensional residual bootstrap for least-squares; showed that residuals did not have the right distribution. Mammen ('89) for robust regression when $p^2/n \to 0$ Of course, if $e = \{e_i\}_{i=1}^n$ are residuals,

$$e = (\mathrm{Id} - X(X^TX)^{-1}X^T)\epsilon \triangleq (\mathrm{Id} - H)\epsilon$$
.

So suggestion for resampling (see e.g Davison-Hinkley '97, many others): use

$$\tilde{\mathbf{e}}_{i} = \frac{\mathbf{e}_{i}}{\sqrt{1 - H_{i,i}}}, H = X(X^{T}X)^{-1}X^{T}$$

In low-dimension, this correction is minimal; in high-d, Gaussian case, $H_{i,j} \simeq 1 - \frac{\rho}{n}$: non-negligible correction

Bootstrapping from the standardized residuals $e_i \stackrel{iid}{\sim} \mathcal{N}(0,1)$

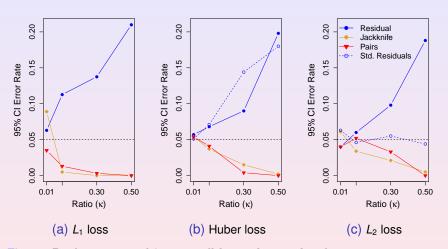


Figure: Performance of 95% confidence intervals of β_1 : n = 500, 1,000 simulations Method works for L_2 ; standardization for Huber (see McKean et al. '93) not effective.

Can we understand situation? Reminders

Recall *M*-estimation problem above. Suppose $p/n \to \kappa \in (0,1)$. For simplicity of statement, X_i i.i.d with mean-0 i.i.d entries with many moments.

Can we understand situation? Reminders

Recall M-estimation problem above. Suppose $p/n \to \kappa \in (0,1)$. For simplicity of statement, X_i i.i.d with mean-0 i.i.d entries with many moments.

Theorem

Under regularity conditions on $\{\epsilon_i\}$ and ρ (convex), $\|\widehat{\beta}_{\rho} - \beta_0\|_2$ is asymptotically deterministic. Call $r_{\rho}(\kappa)$ its limit and $\widehat{z}_{\epsilon} = \epsilon + r_{\rho}(\kappa)Z$, where $Z \sim \mathcal{N}(0,1)$, independent of ϵ . For c deterministic, we have

$$\begin{cases} \mathbf{E}\left([prox(c\rho)]'(\hat{z}_{\epsilon})\right) &= 1 - \kappa ,\\ \kappa r_{\rho}^{2}(\kappa) &= \mathbf{E}\left([\hat{z}_{\epsilon} - prox(c\rho)(\hat{z}_{\epsilon})]^{2}\right) .\end{cases}$$

By definition, (Moreau '65), for convex function f,

$$\operatorname{prox}(f)(x) = \operatorname{argmin}_y \left(f(y) + \frac{1}{2} (x - y)^2 \right) .$$

On the residuals: reminders

Call $e_i = Y_i - \widehat{\beta}_{\rho}^T X_i$, the *i*-th residual. In the asymptotic limit,

$$e_i \stackrel{\mathcal{L}}{=} \operatorname{prox}(c\rho)(\epsilon_i + r_\rho(\kappa)Z_i) , Z_i \sim \mathcal{N}(0,1) \perp \!\!\! \perp \epsilon_i$$

where $Z_i \sim \mathcal{N}(0,1)$ independent of ϵ_i .

- if $\rho(x) = x^2/2$, $\operatorname{prox}(c\rho)[x] = \frac{x}{1+c}$; hence, here $\frac{1}{1+c} = 1 \kappa$
- ② if $\rho(x) = |x|$, $prox(c\rho)[x] = sgn(x)(|x| c)_+$

Comments:

even in LS case, e_i's do not have the right marginal distribution. However, only var (e_i) matters then... Hence, simple scaling works, though usual interpretation misleading/wrong

On the residuals: reminders

Call $e_i = Y_i - \widehat{\beta}_{\rho}^T X_i$, the *i*-th residual. In the asymptotic limit,

$$e_i \stackrel{\mathcal{L}}{=} \operatorname{prox}(c\rho)(\epsilon_i + r_\rho(\kappa)Z_i) , Z_i \sim \mathcal{N}(0,1) \perp \!\!\! \perp \epsilon_i$$

where $Z_i \sim \mathcal{N}(0,1)$ independent of ϵ_i .

- if $\rho(x) = x^2/2$, $\operatorname{prox}(c\rho)[x] = \frac{x}{1+c}$; hence, here $\frac{1}{1+c} = 1 \kappa$
- ② if $\rho(x) = |x|$, $prox(c\rho)[x] = sgn(x)(|x| c)_+$

Comments:

- even in LS case, e_i's do not have the right marginal distribution. However, only var (e_i) matters then... Hence, simple scaling works, though usual interpretation misleading/wrong
- 2 For other loss functions, clear that performance depends on more than a few moments, hence problems

On the residuals: reminders

Call $e_i = Y_i - \widehat{\beta}_{\rho}^T X_i$, the *i*-th residual. In the asymptotic limit,

$$e_i \stackrel{\mathcal{L}}{=} \operatorname{prox}(c\rho)(\epsilon_i + r_\rho(\kappa)Z_i) , Z_i \sim \mathcal{N}(0,1) \perp \!\!\!\perp \epsilon_i$$

where $Z_i \sim \mathcal{N}(0,1)$ independent of ϵ_i .

- if $\rho(x) = x^2/2$, $\operatorname{prox}(c\rho)[x] = \frac{x}{1+c}$; hence, here $\frac{1}{1+c} = 1 \kappa$
- ② if $\rho(x) = |x|$, $prox(c\rho)[x] = sgn(x)(|x| c)_+$

Comments:

- even in LS case, e_i's do not have the right marginal distribution. However, only var (e_i) matters then... Hence, simple scaling works, though usual interpretation misleading/wrong
- 2 For other loss functions, clear that performance depends on more than a few moments, hence problems
- Bickel-Freedman, '83, for OLS answered a slightly different question

- Advocated for a long-time even in robust regression (e.g Shorack '81): clearly problematic here
- Many methods suggested in low-dimension to improve second order accuracy: see e.g Koenker ('05), Parzen et al. ('94), De Angelis et al. ('93), McKean et al. ('93); outside of L₂, these methods did not improve our numerical results
- So question: can we do better?

Bootstrapping from residuals

A couple ideas

Recall that in robust regression, asymptotically, in setting considered here:

$$Y_i - X_i^T \widehat{\beta} = \mathbf{e_i} \stackrel{\mathcal{L}}{=} \operatorname{prox}(c\rho)(\epsilon_i + r_\rho(\kappa)Z_i) , Z_i \sim \mathcal{N}(0,1) \perp \!\!\! \perp \epsilon_i$$

 $prox(c\rho)$ problematic: so instead, use as basis of work

$$\tilde{e}_{i,(i)} = Y_i - X_i^T \widehat{\beta}_{(i)} = \epsilon_i + X_i^T (\beta_0 - \widehat{\beta}_{(i)})$$
, because $e_i = \text{prox}(c\rho)(\tilde{e}_{i,(i)})$.

where $\widehat{\beta}_{(i)}$ is leave-*i*-th-observation out estimate. Remarks:

• Stochastic structure of $\tilde{e}_{i,(i)}$ comparatively simpler than that of e_i

Bootstrapping from residuals

A couple ideas

Recall that in robust regression, asymptotically, in setting considered here:

$$Y_i - X_i^T \widehat{\beta} = \mathbf{e_i} \stackrel{\mathcal{L}}{=} \operatorname{prox}(c\rho)(\epsilon_i + r_\rho(\kappa)Z_i) , Z_i \sim \mathcal{N}(0,1) \perp \epsilon_i$$

 $\operatorname{prox}(\boldsymbol{c}\rho)$ problematic: so instead, use as basis of work

$$\tilde{e}_{i,(i)} = Y_i - X_i^T \widehat{\beta}_{(i)} = \epsilon_i + X_i^T (\beta_0 - \widehat{\beta}_{(i)})$$
, because $e_i = \text{prox}(c\rho)(\tilde{e}_{i,(i)})$.

where $\widehat{\beta}_{(i)}$ is leave-*i*-th-observation out estimate. Remarks:

- Stochastic structure of $\tilde{e}_{i,(i)}$ comparatively simpler than that of e_i
- Problem 1 with $\tilde{e}_{i,(i)}$: excess variance compared to ϵ_i

Bootstrapping from residuals

A couple ideas

Recall that in robust regression, asymptotically, in setting considered here:

$$Y_i - X_i^T \widehat{\beta} = \mathbf{e_i} \stackrel{\mathcal{L}}{=} \operatorname{prox}(c\rho)(\epsilon_i + r_\rho(\kappa)Z_i) , Z_i \sim \mathcal{N}(0,1) \perp \epsilon_i$$

 $prox(c\rho)$ problematic: so instead, use as basis of work

$$\tilde{e}_{i,(i)} = Y_i - X_i^T \widehat{\beta}_{(i)} = \epsilon_i + X_i^T (\beta_0 - \widehat{\beta}_{(i)})$$
, because $e_i = \text{prox}(c\rho)(\tilde{e}_{i,(i)})$.

where $\widehat{\beta}_{(i)}$ is leave-*i*-th-observation out estimate. Remarks:

- Stochastic structure of $\tilde{e}_{i,(i)}$ comparatively simpler than that of e_i
- Problem 1 with $\tilde{e}_{i,(i)}$: excess variance compared to ϵ_i
- Problem 2 with $\tilde{e}_{i,(i)}$: extra "Gaussian" component

Idea: resample from $\tilde{e}_{i,(i)}$ but properly scale them. Need at least right variance...

How to do so?

- Estimate $\sigma^2(\epsilon)$ using least squares: easy to get consistent estimator in high-dimension for that
- ② Easy to get estimate of $\|(\beta_0 \widehat{\beta}_{(i)})\|$ then.
- **3** Normalize $e_{i,(i)}$ to $\tilde{e}_{i,(i)}$ so variance of the latter is $\hat{\sigma}(\epsilon)$.
- **1** Use $\tilde{e}_{i,(i)}$ in bootstrap resampling

Bootstrapping the residuals

Approach 1: scaling predicted errors; $\epsilon_i \stackrel{iid}{\backsim}$ double exponential

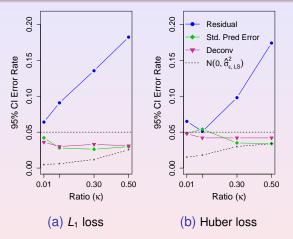


Figure: Bootstrap based on predicted errors: We plotted the error rate of 95% confidence intervals for alternative bootstrap methods: bootstrapping from standardized predicted errors (blue) and from deconvolution of predicted error (magenta).

Further bootstraps

Conclusion about bootstrapping residuals:

- Need to be careful in general not accurate/can fail
- Anti-conservative in general: CI do not cover the true value with the probability we want
- Appears possible to fix to a certain/large extent the problems

Another type of bootstrap Resampling the pairs

Will now discuss another type of bootstrap: pairs-resampling

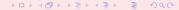
Another type of bootstrap Resampling the pairs

Will now discuss another type of bootstrap: **pairs-resampling** In standard books, this is the technique that is favored in general.

Idea:

- For b = 1, ..., B, sample with replacement from $(X_i, Y_i)_{i=1}^n$.
- Get new dataset $(X_{i,b}^*, Y_{i,b}^*)_{i=1}^n$
- Fit model to this new dataset to get $\{\widehat{\beta}_b^*\}_{b=1}^B$

Do inference using $\{\widehat{\beta}_b^*\}_{b=1}^B$



More details

Note that, if $w_{i,b}^*$ is number of times (X_i, Y_i) appears in b-th boot sample:

$$\widehat{\beta}_b^* = \operatorname{argmin}_{\beta \in \mathbb{R}^p} \sum_{i=1}^n w_{i,b}^* \rho(Y_i - X_i^T \beta)$$
.

More details

Note that, if $w_{i,b}^*$ is number of times (X_i, Y_i) appears in b-th boot sample:

$$\widehat{\beta}_b^* = \operatorname{argmin}_{\beta \in \mathbb{R}^p} \sum_{i=1}^n w_{i,b}^* \rho(Y_i - X_i^T \beta) .$$

Potential problems:

Number of distinct pairs $\{(X_i, Y_i)\}$ in bootstrapped sample is roughly (1 - 1/e)n. Problem if p > (1 - 1/e)n

More details

Note that, if $w_{i,b}^*$ is number of times (X_i, Y_i) appears in b-th boot sample:

$$\widehat{\beta}_b^* = \operatorname{argmin}_{\beta \in \mathbb{R}^p} \sum_{i=1}^n w_{i,b}^* \rho(Y_i - X_i^T \beta) .$$

- Number of distinct pairs $\{(X_i, Y_i)\}$ in bootstrapped sample is roughly (1 1/e)n. Problem if p > (1 1/e)n
- Understood in NEK et al. '11 that weighted robust regression has very different statistical properties than unweighted; measure concentration

More details

Note that, if $w_{i,b}^*$ is number of times (X_i, Y_i) appears in b-th boot sample:

$$\widehat{\beta}_b^* = \operatorname{argmin}_{\beta \in \mathbb{R}^p} \sum_{i=1}^n w_{i,b}^* \rho(Y_i - X_i^T \beta) .$$

- Number of distinct pairs $\{(X_i, Y_i)\}$ in bootstrapped sample is roughly (1 1/e)n. Problem if p > (1 1/e)n
- Understood in NEK et al. '11 that weighted robust regression has very different statistical properties than unweighted; measure concentration
- **3** RM point of view: least squares: $X_i \to \sqrt{w_{i,b}^*} X_i$: move from "Gaussian to elliptical".

More details

Note that, if $w_{i,b}^*$ is number of times (X_i, Y_i) appears in b-th boot sample:

$$\widehat{\beta}_b^* = \operatorname{argmin}_{\beta \in \mathbb{R}^p} \sum_{i=1}^n w_{i,b}^* \rho(Y_i - X_i^T \beta) .$$

- Number of distinct pairs $\{(X_i, Y_i)\}$ in bootstrapped sample is roughly (1 1/e)n. Problem if p > (1 1/e)n
- Understood in NEK et al. '11 that weighted robust regression has very different statistical properties than unweighted; measure concentration
- **3** RM point of view: least squares: $X_i \to \sqrt{w_{i,b}^*} X_i$: move from "Gaussian to elliptical".
- "Reweighting changes the effective geometry of the dataset": so potentially problematic here

More details

Note that, if $w_{i,b}^*$ is number of times (X_i, Y_i) appears in b-th boot sample:

$$\widehat{\beta}_b^* = \operatorname{argmin}_{\beta \in \mathbb{R}^p} \sum_{i=1}^n w_{i,b}^* \rho(Y_i - X_i^T \beta) .$$

- Number of distinct pairs $\{(X_i, Y_i)\}$ in bootstrapped sample is roughly (1 1/e)n. Problem if p > (1 1/e)n
- Understood in NEK et al. '11 that weighted robust regression has very different statistical properties than unweighted; measure concentration
- **3** RM point of view: least squares: $X_i \to \sqrt{w_{i,b}^*} X_i$: move from "Gaussian to elliptical".
- "Reweighting changes the effective geometry of the dataset": so potentially problematic here
- **1** Note however that reweighting also affects ϵ_i 's

How does it fare?

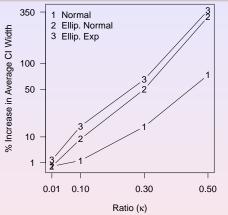


Figure: Comparison of width of 95% confidence intervals of β_1 for L_2 loss: y-axis is the percent increase of the average confidence interval width based on simulation (n=500), as compared to the average for the standard confidence interval based on normal theory in L_2 ; the percent increase is plotted against the ratio $\kappa = p/n$ (x-axis)

Pairs bootstrapping

Some theory

Theorem

Weights $(w_i)_{i=1}^n$ be i.i.d., $\mathbf{E}(w_i) = 1$; enough moments and bounded away from 0. $X_i \stackrel{iid}{\backsim} \mathcal{N}(0, \mathrm{Id}_p)$; v: deterministic unit vector.

Suppose $\widehat{\beta}$ is obtained by solving a least-squares problem - linear model holds; $\operatorname{var}(\epsilon_i) = \sigma_{\epsilon}^2$

If $\lim p/n = \kappa < 1$ then asymptotically as $n \to \infty$

$$p\mathbf{E}\left(\operatorname{var}\left(\mathbf{v}^{T}\widehat{\beta}_{\mathbf{w}}^{*}\right)\right) \to \sigma_{\epsilon}^{2}\left[\kappa \frac{1}{1-\kappa-\mathbf{E}\left(\frac{1}{(1+c\mathbf{w}_{i})^{2}}\right)} - \frac{1}{1-\kappa}\right] ,$$

c : unique solution of

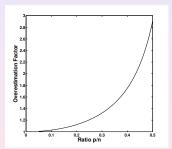
$$\mathbf{E}\left(\frac{1}{1+cw_i}\right)=1-\kappa.$$

Note that of course in setup above,

$$p \text{var}\left(\mathbf{v}^T \widehat{\boldsymbol{\beta}}\right) \to \sigma_{\epsilon}^2 \frac{\kappa}{1-\kappa}$$

- Pairs-bootstrap does not get the right variance
- Confidence intervals are too wide: method is conservative (covers the truth more often than it should)
- 3 Ratio **E** $\left(\operatorname{var} \left(v^T \widehat{\beta}_w^* \right) \right) / \operatorname{var} \left(v^T \widehat{\beta} \right)$ does not depend on $\operatorname{cov} \left(X_i \right) = \Sigma$ results true for any Σ
- Suggest weight corrections (not discussed because of time constraints)

Pairs bootstrapping Numerics

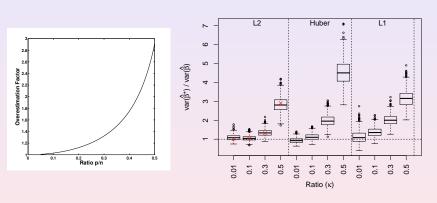


(a) L₂ (Theoretical)

Figure: Factor by which standard pairs bootstrap over-estimates the variance: Gaussian design, Gaussian errors

Pairs bootstrapping

Numerics



(a) L₂ (Theoretical)

(b) All (Simulated)

Figure: Factor by which standard pairs bootstrap over-estimates the variance: Gaussian design, Gaussian errors

Beyond regression problems

Are these issues limited to the simple setting of regression?

Another type of statistics: eigenvalues of covariance matrices

Recall if data is X_i ,

$$\widehat{\Sigma} = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})(X_i - \bar{X})^T.$$

Bootstrap quite widely used to assess fluctuation behavior of eigenvalues of sample covariance matrices. See Beran and Srivastava ('85), Eaton and Tyler ('91)

Recall if data is X_i ,

$$\widehat{\Sigma} = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})(X_i - \bar{X})^T.$$

Bootstrap quite widely used to assess fluctuation behavior of eigenvalues of sample covariance matrices. See Beran and Srivastava ('85), Eaton and Tyler ('91)

In context of p fixed and $n \to \infty$, showed that when Σ has eigenvalues of multiplicity 1, bootstrap works.

Recall if data is X_i ,

$$\widehat{\Sigma} = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})(X_i - \bar{X})^T.$$

Bootstrap quite widely used to assess fluctuation behavior of eigenvalues of sample covariance matrices. See Beran and Srivastava ('85), Eaton and Tyler ('91)

In context of p fixed and $n \to \infty$, showed that when Σ has eigenvalues of multiplicity 1, bootstrap works. Fails when eigenvalues have multiplicity higher than 1.

Recall if data is X_i ,

$$\widehat{\Sigma} = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})(X_i - \bar{X})^T.$$

Bootstrap quite widely used to assess fluctuation behavior of eigenvalues of sample covariance matrices. See Beran and Srivastava ('85), Eaton and Tyler ('91)

In context of p fixed and $n \to \infty$, showed that when Σ has eigenvalues of multiplicity 1, bootstrap works. Fails when eigenvalues have multiplicity higher than 1. Can use subsampling to fix the problem.

Recall if data is X_i ,

$$\widehat{\Sigma} = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})(X_i - \bar{X})^T.$$

Bootstrap quite widely used to assess fluctuation behavior of eigenvalues of sample covariance matrices. See Beran and Srivastava ('85), Eaton and Tyler ('91)

In context of p fixed and $n \to \infty$, showed that when Σ has eigenvalues of multiplicity 1, bootstrap works. Fails when eigenvalues have multiplicity higher than 1. Can use subsampling to fix the problem.

Bootstrapping eigenvalues currently used in a number of fields (see e.g several papers in British Journal of Psychology '07) Now question: is that true if $p/n \rightarrow c \neq 0$?

Classic results

Recall

Theorem (Johnstone ('01))

If X_i are i.i.d $\mathcal{N}(0, \mathrm{Id}_p)$, then as $p/n \to \gamma \in (0, \infty)$

$$n^{2/3} rac{\lambda_{max}(\widehat{\Sigma}) - (1 + \sqrt{p/n})^2}{\sigma_{n,p}} \Rightarrow TW_1 .$$

Further results: phase transition at $\lambda_1(\Sigma)=1+\sqrt{p/n}$ (BBP, '04); general Σ case (N₂EK, '05; Lee and Schnelli '13). Much work since then.

Classic results

Recall

Theorem (Johnstone ('01))

If X_i are i.i.d $\mathcal{N}(0, \mathrm{Id}_p)$, then as $p/n \to \gamma \in (0, \infty)$

$$n^{2/3} rac{\lambda_{max}(\widehat{\Sigma}) - (1 + \sqrt{p/n})^2}{\sigma_{n,p}} \Rightarrow TW_1 .$$

Further results: phase transition at $\lambda_1(\Sigma)=1+\sqrt{p/n}$ (BBP, '04); general Σ case (N₂EK, '05; Lee and Schnelli '13). Much work since then.

Also classic work (Marcenko-Pastur ('67), Wachter ('78)) about empirical spectral distribution of eigenvalues

Eigenvalues Numerics: bias

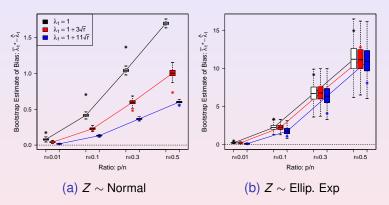


Figure: Bias of Largest Bootstrap Eigenvalue, n=1,000: Plotted are boxplots of the difference of the average bootstrap value of λ_1 over 999 bootstrap samples, minus the estimate $\hat{\lambda}_1$ over 1000 simulations; $\bar{\lambda}_1^* - \hat{\lambda}_1$ is also the standard bootstrap estimate of bias.

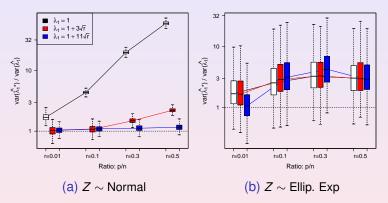
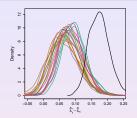


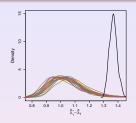
Figure: Ratio of Bootstrap Estimate of Variance to True Variance for Largest Eigenvalue, n=1,000: Plotted are boxplots of the bootstrap estimate of variance (B=999) as a ratio of the true variance of $\hat{\lambda}_1$; boxplots represent the bootstrap estimate of variance

Eigenvalues

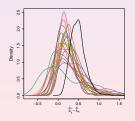
Numerics: distribution in null case



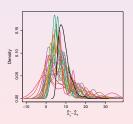
(a) $Z \sim \text{Normal}$, r=0.01



(b) $Z \sim \text{Normal}$, r=0.3



(c) $Z \sim \text{Ellip. Exp}$, r=0.01



(d) $Z \sim \text{Ellip. Exp,}$

- Simple theory for well separated eigenvalues
- Possible to do theory of spectral distribution of eigenvalues: Results are negative: bootstrapped Stieltjes transform concentrates but around the "wrong" Stieltjes transform.
- Can be used (with a few more refined tools) to understand bootstrap bias

Bootstrap:

 Standard techniques/intuition do not perform well (jackknife)

- Standard techniques/intuition do not perform well (jackknife)
- Caveat: resampling from scaled residuals work for least-squares (but do we need it in our context?)

- Standard techniques/intuition do not perform well (jackknife)
- Caveat: resampling from scaled residuals work for least-squares (but do we need it in our context?)
- Hinted at possible fixes for in robust-regression setups

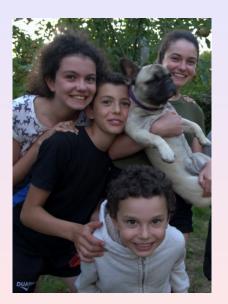
- Standard techniques/intuition do not perform well (jackknife)
- Caveat: resampling from scaled residuals work for least-squares (but do we need it in our context?)
- Hinted at possible fixes for in robust-regression setups
- Main Problem: we do not know in what direction standard bootstrap has issues... Beyond our simple examples, what about truly complicated applied setups?

- Standard techniques/intuition do not perform well (jackknife)
- Caveat: resampling from scaled residuals work for least-squares (but do we need it in our context?)
- Hinted at possible fixes for in robust-regression setups
- Main Problem: we do not know in what direction standard bootstrap has issues... Beyond our simple examples, what about truly complicated applied setups?
- Slightly more complicated problem of eigenvalues results in severe problems... unless the problem is effectively low-d and trivial

- Standard techniques/intuition do not perform well (jackknife)
- Caveat: resampling from scaled residuals work for least-squares (but do we need it in our context?)
- Hinted at possible fixes for in robust-regression setups
- Main Problem: we do not know in what direction standard bootstrap has issues... Beyond our simple examples, what about truly complicated applied setups?
- Slightly more complicated problem of eigenvalues results in severe problems... unless the problem is effectively low-d and trivial
- Seems bootstrap genuinely perturbation-analytic method

- Standard techniques/intuition do not perform well (jackknife)
- Caveat: resampling from scaled residuals work for least-squares (but do we need it in our context?)
- Hinted at possible fixes for in robust-regression setups
- Main Problem: we do not know in what direction standard bootstrap has issues... Beyond our simple examples, what about truly complicated applied setups?
- Slightly more complicated problem of eigenvalues results in severe problems... unless the problem is effectively low-d and trivial
- Seems bootstrap genuinely perturbation-analytic method
- Large n, p theory seems to capture some phenomena observed in practice - may lead to a practically informative theory.

Bon anniversaire!



Bon anniversaire!

Bon anniversaire!

Robust regression estimator

Impact of error distribution

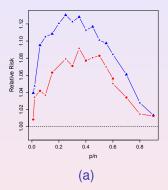


Figure: Solid line: Relative Risk of $\widehat{\beta}$ for scaled predicted errors vs original errors - population version

Robust regression estimator

Impact of error distribution

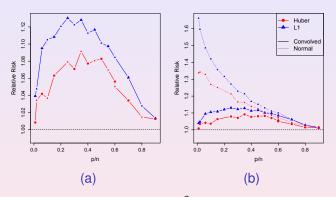


Figure: Solid line: Relative Risk of $\widehat{\beta}$ for scaled predicted errors vs original errors - population version Dotted line: using $\eta_i \stackrel{iid}{\sim} \mathcal{N}(0, \sigma_c^2)$