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What is the bootstrap?

Bootstrap (Efron, ’79): care about statistic θ̂n; would like to
know its law. Can we do this from the data/sample we observe?
Example: sample mean; suppose we have data X1, . . . ,Xn,
i.i.d, Xi ∈ R. E (Xi) = µ, var (Xi) = σ2; interested in

X̄n =
1
n

n∑
i=1

Xi .

Want to create a confidence interval for µ, the mean of Xi .

Option 1: law of θ̂n = X̄n? Central limit theorem:

√
n

X̄n − µ
σ

=⇒ N (0,1) .

100 (1-α)%CI: X̄n ± σ√
n z1−α/2; t-distribution variants

Option 2: bootstrap
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Bootstrap
More details in the case of sample mean

Idea: from the original sample, create lots of “new” datasets;
this should mimick sampling mechanism which gave us X̄n from
population distribution
In more detail:

For b = 1, . . . ,B, repeat:

Sample n times with replacement from {Xi}ni=1, to get
dataset Db = {X ∗1,b, . . . ,X

∗
n,b}.

Compute X̄ ∗n,b = 1
n
∑n

i=1 X ∗i,b
Now use {X̄ ∗n,b}

B
b=1 as approximation of distribution of X̄n

In particular, 95% CI could be, if X̄n,(k) are increasingly ordered
values of {X̄n,b}Bb=1

(X̄ ∗n,(2.5%∗B), X̄
∗
n,(97.5%∗B)) .

So called bootstrap percentile interval; simple computation
shows asymptotically valid
Of course use it for much more complicated statistics
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Bootstrap
Plug-in principle etc...

P: data generating distribution. Empirical distribution:

P̂n =
1
n

n∑
i=1

δXi

Let θ be a functional of those distributions: e.g θ(P): median or
trimmed mean of population
Often: use θ(P̂n) to get confidence interval/statement about
θ(P).
Question e.g.:

(Asymptotic) law of θ(P̂n)− θ(P)?

bootstrap: if P̂∗n is bootstrapped version of P̂n,

Bootstrap law of [θ(P̂∗n)− θ(P̂n)]“ ' ” Law of [θ(P̂n)− θ(P)]?

Left-hand side: we can “resample” the data to get this
Righ-hand side: ideally, we would like to know it, but not
accessible
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Bootstrap
More precise requirement

Suppose we are interested in random variable

θ̂(P̂n,P) and its law Ln(θ̂(P̂n,P))

E.g θ̂(P̂n,P) =
√

n(µ(P̂n)− µ(P))
Suppose

Ln(θ̂(P̂n,P)) =⇒ L
Call Ln,boot (P̂n) the conditional law of θ̂(P̂∗n , P̂n)|P̂n
Then bootstrap works if, e.g,

lim
n→∞

d(Ln,boot (P̂n),L)→ 0 ,a.s X1, . . . ,Xn, . . .

where d : distance between probability measures; alternative:
convergence in probability

Example: Xi i.i.d mean µ, cov (Xi) = Σ, then conditionally on
X1, . . . ,Xn √

n(X̄ ∗n − X̄n) =⇒ N (0,Σ)

for almost every sequence X1, . . . ,Xn, . . .
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Bootstrap
Literature, variants etc...

Bootstrap: brilliant idea, huge impact for applied,
methodological and theoretical statistics; probably one of the
most widely used tool in applied statistics
Everything seems possible; no need for asymptotics. Now,
beside stat practice, very useful in teaching data science and
inferential ideas.

Theory started almost immediately: Bickel-Freedman (AoS,
’81) first fairly general paper.
Lots of activity both practical and theoretical for 30+ years
Standard books: Davison-Hinkley (applied/theory), Hall (mostly
theory), Politis-Romano-Wolf (subsampling)
And lots of variants of bootstrap (e.g m-out-of-n bootstrap
(Bickel et al.), various other subsampling methods...)
Other old techniques discussed later
One big question: when does it work?
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Bootstrap
When does it work? 1-dimensional case

Example where it does not work: Xi
iid
v Unif [0,a], distribution of

the (a−max Xi)

Essentially, need the function θ to be “smooth” enough. Formal
results on next slide. Informally: von Mises calculus:
θ differentiable implies: if θ′(·; P) is linear

θ(P̂n)− θ(P) ' 1√
n
θ′(Gn; P) ,

where Gn =
√

n(P̂n − P) (Donsker thm: limit of Gn is
(P-)Brownian bridge)
Bootstrap: expand θ(P̂∗n) around θ(P) + linearity to get:

θ(P̂∗n)− θ(P̂n) ' 1√
n
θ′(G∗n; P) ,

G∗n =
√

n(P̂∗n − P̂n); G∗n also has P-Brownian bridge as limit
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Bootstrap
Formal conditions

Look at θ as mapping from (D[−∞,∞], ‖·‖∞) 7→ R, where D
càdlàg/rcll functions. If θ Hadamard differentiable, i.e∣∣∣∣θ(F + tht )− θ(F )

t
− θ′(h; F )

∣∣∣∣→ 0,

as t → 0+,∀ht : sup
x∈R
|ht (x)− h(x)| → 0 .

θ′(·; F ): continuous linear map, (D, ‖·‖∞) 7→ R.
Then bootstrap works.
Then not much need to understand fluctuation properties of
θ(P̂n): resampling does it for us.
Often summarized as : “bootstrap works for smooth statistics”
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Plan for rest of talk

Work in the high-dimensional case: data vectors {Xi}ni=1 ∈ Rp,
p/n→ κ ∈ (0,1)
Arguments above (proximity of empirical and population
distribution) fail; but what about bootstrap?

1 Bootstrapping (robust) regression: review
2 Bootstrapping regression in high-dimension: results
3 RM issues in bootstrap

Why p/n not close to 0?

1) often better small sample
approximations; 2) often allows comparison of methods at 1st
order and not second order; so more dramatic differencing of
methods - often consistent with practical knowledge 3) power
series vs 1st order approximation 4) problems statistically
non-trivial
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Review: How to bootstrap in regression?
Model

Motto: copy the data-generating distribution.
Model: Yi ∈ R, Xi ∈ Rp,

Yi = X T
i β0 + εi ,1 ≤ i ≤ n .

For ρ loss function, consider

β̂ρ = argminβ∈Rp

n∑
i=1

ρ(Yi − X T
i β) .

Simplest question: can get CI for β0(1) based on β̂ρ(1)?
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Review: How to bootstrap in regression?
Bootstrapping from residuals

Motto: copy the data-generating process.
Model: Yi ∈ R, Xi ∈ Rp,

Yi = X T
i β0 + εi ,1 ≤ i ≤ n .

What’s random? εi in this context; they are i.i.d.
Xi assumed “fixed” in this example.
So bootstrap from the residuals:

1 estimate β0 by β̂ρ
2 estimate εi by ei ’s; typically ei = Yi − X T

i β̂

3 Repeat for b = 1, . . . ,B
1 Get new errors e∗

i,b by sampling i.i.d at random from {ei}n
i=1

2 Get new dataset Y ∗
i,b = X T

i β̂ + e∗
i,b

3 Fit this new dataset to get β̂∗
b

Do inference using {β̂∗b}
B
b=1
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Bootstrapping from the residuals
εi

iid
v N (0, 1)
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Figure: Performance of 95% confidence intervals of β1 : n = 500,
1,000 simulations Residuals method is anti-conservative!
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Bootstrapping from the residuals
Understanding and fixing(?) the problem

Note: Bickel and Freedman (’83) studied high-dimensional
residual bootstrap for least-squares; showed that residuals did
not have the right distribution. Mammen (’89) for robust
regression when p2/n→ 0

Of course, if e = {ei}ni=1 are residuals,

e = (Id− X (X T X )−1X T )ε , (Id− H)ε .

So suggestion for resampling (see e.g Davison-Hinkley ’97,
many others): use

ẽi =
ei√

1− Hi,i
,H = X (X T X )−1X T

In low-dimension, this correction is minimal; in high-d,
Gaussian case, Hi,i ' 1− p

n : non-negligible correction
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Bootstrapping from the standardized residuals
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Figure: Performance of 95% confidence intervals of β1 : n = 500,
1,000 simulations Method works for L2; standardization for Huber
(see McKean et al. ’93) not effective.
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Bootstrapping from the residuals
Can we understand situation? Reminders

Recall M-estimation problem above. Suppose
p/n→ κ ∈ (0,1). For simplicity of statement, Xi i.i.d with
mean-0 i.i.d entries with many moments.

Theorem

Under regularity conditions on {εi} and ρ (convex), ‖β̂ρ − β0‖2
is asymptotically deterministic. Call rρ(κ) its limit and
ẑε = ε+ rρ(κ)Z, where Z ∼ N (0,1), independent of ε. For c
deterministic, we have{

E ([prox(cρ)]′(ẑε)) = 1− κ ,
κr2
ρ (κ) = E

(
[ẑε − prox(cρ)(ẑε)]2

)
.

By definition, (Moreau ’65), for convex function f ,

prox(f )(x) = argminy

(
f (y) +

1
2

(x − y)2
)
.
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Under regularity conditions on {εi} and ρ (convex), ‖β̂ρ − β0‖2
is asymptotically deterministic. Call rρ(κ) its limit and
ẑε = ε+ rρ(κ)Z, where Z ∼ N (0,1), independent of ε. For c
deterministic, we have{

E ([prox(cρ)]′(ẑε)) = 1− κ ,
κr2
ρ (κ) = E

(
[ẑε − prox(cρ)(ẑε)]2

)
.

By definition, (Moreau ’65), for convex function f ,

prox(f )(x) = argminy

(
f (y) +

1
2

(x − y)2
)
.
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Bootstrapping from residuals
On the residuals: reminders

Call ei = Yi − β̂T
ρ Xi , the i-th residual. In the asymptotic limit,

ei
L
= prox(cρ)(εi + rρ(κ)Zi) ,Zi ∼ N (0,1) ⊥⊥ εi

where Zi ∼ N (0,1) independent of εi .
1 if ρ(x) = x2/2, prox(cρ)[x ] = x

1+c ; hence, here 1
1+c = 1− κ

2 if ρ(x) = |x |, prox(cρ)[x ] = sgn(x)(|x | − c)+

Comments:
1 even in LS case, ei ’s do not have the right marginal

distribution. However, only var (ei) matters then... Hence,
simple scaling works, though usual interpretation
misleading/wrong

2 For other loss functions, clear that performance depends
on more than a few moments, hence problems

3 Bickel-Freedman, ’83, for OLS - answered a slightly
different question
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Bootstrapping from the residuals
Further comments

1 Advocated for a long-time even in robust regression (e.g
Shorack ’81): clearly problematic here

2 Many methods suggested in low-dimension to improve
second order accuracy: see e.g Koenker (’05), Parzen et
al. (’94), De Angelis et al. (’93), McKean et al. (’93);
outside of L2, these methods did not improve our numerical
results

3 So question: can we do better?
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Bootstrapping from residuals
A couple ideas

Recall that in robust regression, asymptotically, in setting
considered here:

Yi − X T
i β̂ = ei

L
= prox(cρ)(εi + rρ(κ)Zi) ,Zi ∼ N (0,1) ⊥⊥ εi

prox(cρ) problematic: so instead, use as basis of work

ẽi,(i) = Yi − X T
i β̂(i) = εi + X T

i (β0 − β̂(i)) , because

ei = prox(cρ)(ẽi,(i)) .

where β̂(i) is leave-i-th-observation out estimate. Remarks:
Stochastic structure of ẽi,(i) comparatively simpler than that
of ei

Problem 1 with ẽi,(i): excess variance compared to εi
Problem 2 with ẽi,(i): extra “Gaussian” component
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Stochastic structure of ẽi,(i) comparatively simpler than that
of ei
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Problem 2 with ẽi,(i): extra “Gaussian” component

N2 El Karoui (joint with Elizabeth Purdom) A few remarks on the bootstrap



Bootstrapping from residuals
A couple ideas

Recall that in robust regression, asymptotically, in setting
considered here:

Yi − X T
i β̂ = ei

L
= prox(cρ)(εi + rρ(κ)Zi) ,Zi ∼ N (0,1) ⊥⊥ εi

prox(cρ) problematic: so instead, use as basis of work
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Bootstrapping the residuals
Approach 1: scaling predicted errors

Idea: resample from ẽi,(i) but properly scale them. Need at
least right variance...
How to do so?

1 Estimate σ2(ε) using least squares: easy to get consistent
estimator in high-dimension for that

2 Easy to get estimate of ‖(β0 − β̂(i))‖ then.
3 Normalize ei,(i) to ẽi,(i) so variance of the latter is σ̂(ε).
4 Use ẽi,(i) in bootstrap resampling
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Bootstrapping the residuals
Approach 1: scaling predicted errors; εi

iid
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Figure: Bootstrap based on predicted errors: We plotted the error
rate of 95% confidence intervals for alternative bootstrap methods:
bootstrapping from standardized predicted errors (blue) and from
deconvolution of predicted error (magenta).
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Further bootstraps

Conclusion about bootstrapping residuals:
1 Need to be careful - in general not accurate/can fail
2 Anti-conservative in general: CI do not cover the true value

with the probability we want
3 Appears possible to fix to a certain/large extent the

problems
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Another type of bootstrap
Resampling the pairs

Will now discuss another type of bootstrap: pairs-resampling

In standard books, this is the technique that is favored in
general.
Idea:

For b = 1, . . . ,B, sample with replacement from (Xi ,Yi)
n
i=1.

Get new dataset (X ∗i,b,Y
∗
i,b)n

i=1

Fit model to this new dataset to get {β̂∗b}
B
b=1

Do inference using {β̂∗b}
B
b=1
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Pairs bootstrap
More details

Note that, if w∗i,b is number of times (Xi ,Yi) appears in b-th boot
sample:

β̂∗b = argminβ∈Rp

n∑
i=1

w∗i,bρ(Yi − X T
i β) .

Potential problems :

1 Number of distinct pairs {(Xi ,Yi)} in bootstrapped sample
is roughly (1− 1/e)n. Problem if p > (1− 1/e)n

2 Understood in NEK et al. ’11 that weighted robust
regression has very different statistical properties than
unweighted; measure concentration

3 RM point of view: least squares: Xi →
√

w∗i,bXi : move from

“Gaussian to elliptical”.
4 “Reweighting changes the effective geometry of the

dataset”: so potentially problematic here
5 Note however that reweighting also affects εi ’s
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Pairs bootstrap
How does it fare?
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Figure: Comparison of width of 95% confidence intervals of β1
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in L2; the percent increase is plotted against the ratio κ = p/n
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Pairs bootstrapping
Some theory

Theorem
Weights (wi)

n
i=1 be i.i.d., E (wi) = 1; enough moments and

bounded away from 0. Xi
iid
v N (0, Idp); v : deterministic unit

vector.
Suppose β̂ is obtained by solving a least-squares problem -
linear model holds; var (εi) = σ2

ε

If lim p/n = κ < 1 then asymptotically as n→∞

pE
(

var
(

vT β̂∗w

))
→ σ2

ε

κ 1

1− κ− E
(

1
(1+cwi )2

) − 1
1− κ

 ,

c : unique solution of

E
(

1
1 + cwi

)
= 1− κ .
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Pairs bootstrapping
A comment

Note that of course in setup above,

pvar
(

vT β̂
)
→ σ2

ε

κ

1− κ

1 Pairs-bootstrap does not get the right variance
2 Confidence intervals are too wide: method is conservative

(covers the truth more often than it should)
3 Ratio E

(
var
(

vT β̂∗w

))
/var

(
vT β̂

)
does not depend on

cov (Xi) = Σ - results true for any Σ

4 Suggest weight corrections (not discussed because of time
constraints)
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Pairs bootstrapping
Numerics
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Figure: Factor by which standard pairs bootstrap over-estimates
the variance: Gaussian design, Gaussian errors
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Beyond regression problems

Are these issues limited to the simple setting of regression?
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Another type of statistics: eigenvalues of covariance
matrices
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Sample covariance matrices and their eigenvalues

Recall if data is Xi ,

Σ̂ =
1

n − 1

n∑
i=1

(Xi − X̄ )(Xi − X̄ )T .

Bootstrap quite widely used to assess fluctuation behavior of
eigenvalues of sample covariance matrices. See Beran and
Srivastava (’85), Eaton and Tyler (’91)

In context of p fixed and n→∞, showed that when Σ has
eigenvalues of multiplicity 1, bootstrap works. Fails when
eigenvalues have multiplicity higher than 1. Can use
subsampling to fix the problem.
Bootstrapping eigenvalues currently used in a number of fields
(see e.g several papers in British Journal of Psychology ’07)
Now question: is that true if p/n→ c 6= 0?
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Classic results

Recall

Theorem (Johnstone (’01))

If Xi are i.i.d N (0, Idp), then as p/n→ γ ∈ (0,∞)

n2/3λmax (Σ̂)− (1 +
√

p/n)2

σn,p
⇒ TW1 .

Further results: phase transition at λ1(Σ) = 1 +
√

p/n (BBP,
’04); general Σ case (N2EK, ’05; Lee and Schnelli ’13). Much
work since then.

Also classic work (Marcenko-Pastur (’67), Wachter (’78)) about
empirical spectral distribution of eigenvalues

N2 El Karoui (joint with Elizabeth Purdom) A few remarks on the bootstrap



Classic results

Recall

Theorem (Johnstone (’01))

If Xi are i.i.d N (0, Idp), then as p/n→ γ ∈ (0,∞)

n2/3λmax (Σ̂)− (1 +
√

p/n)2

σn,p
⇒ TW1 .

Further results: phase transition at λ1(Σ) = 1 +
√

p/n (BBP,
’04); general Σ case (N2EK, ’05; Lee and Schnelli ’13). Much
work since then.
Also classic work (Marcenko-Pastur (’67), Wachter (’78)) about
empirical spectral distribution of eigenvalues

N2 El Karoui (joint with Elizabeth Purdom) A few remarks on the bootstrap



Eigenvalues
Numerics: bias
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Figure: Bias of Largest Bootstrap Eigenvalue, n=1,000: Plotted
are boxplots of the difference of the average bootstrap value of λ1
over 999 bootstrap samples, minus the estimate λ̂1 over 1000
simulations; λ̄∗1 − λ̂1 is also the standard bootstrap estimate of bias.
Each group of boxplots along the x-axis corresponds to a different
ratio r of p/n; different colors of the boxplot correspond to different
values of the true λ1 : 1, 1 + 3

√
r ,1 + 11

√
r ; for larger values of λ1 see

Supplementary Figure ??. The asterisk (*) in the plot corresponds to
the true bias, λ̂1 − λ1 as evaluated over 1,000 simulations. See
Supplemental Table ?? for the median values of boxplots.
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Eigenvalues
Numerics: variance
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Figure: Ratio of Bootstrap Estimate of Variance to True Variance
for Largest Eigenvalue, n=1,000: Plotted are boxplots of the
bootstrap estimate of variance (B = 999) as a ratio of the true
variance of λ̂1; boxplots represent the bootstrap estimate of variance
over 1000 independent simulations. Each group of boxplots along the
x-axis corresponds to a different ratio r of p/n; different colors of the
boxplot correspond to different values of the true λ1 : 1 (white),
1 + 3

√
r (red), and 1 + 11

√
r (blue); for larger values of λ1 see

Supplementary Figure ??. See Supplemental Table ?? for the
median values of boxplots.
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Eigenvalues
Numerics: distribution in null case
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Figure: Bootstrap distribution of λ̂∗1 under the null (λ1 = 1),
n=1,000: Plotted are the estimated density of twenty simulations of
the bootstrap distribution of λ̂∗b

1 − λ̂1, with b = 1, . . . ,999. The solid
black line line represents the distribution of λ̂1 − λ1 over 1,000
simulations. For similar figures for the larger value of λ1 = 1 + 3

√
r ,

see Supplementary Figure ??.
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Eigenvalues
Theory: skipped in interest of time

Simple theory for well separated eigenvalues
Possible to do theory of spectral distribution of eigenvalues:
Results are negative: bootstrapped Stieltjes transform
concentrates but around the “wrong” Stieltjes transform.
Can be used (with a few more refined tools) to understand
bootstrap bias
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Conclusions

Bootstrap :
Standard techniques/intuition do not perform well
(jackknife)

Caveat: resampling from scaled residuals work for
least-squares (but do we need it in our context?)
Hinted at possible fixes for in robust-regression setups
Main Problem: we do not know in what direction standard
bootstrap has issues... Beyond our simple examples, what
about truly complicated applied setups?
Slightly more complicated problem of eigenvalues results
in severe problems... unless the problem is effectively
low-d and trivial
Seems bootstrap genuinely perturbation-analytic method
Large n,p theory seems to capture some phenomena
observed in practice - may lead to a practically informative
theory.
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Bon anniversaire!
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Robust regression estimator
Impact of error distribution
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Figure: Solid line: Relative Risk of β̂ for scaled predicted errors
vs original errors - population version

Dotted line: using
ηi

iid
v N (0, σ2

ε )
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