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Basic Definition

Let X be an FT -measurable r.v. on (Ω,F ,P).

1 FX(·) : the probability distribution function of X;

2 F−1X (·) : the inverse of FX(·); also called the quantile
function of X;

3 Φ(·): the standard normal distribution;

4 X ∼ µ : X is an FT -measurable random variable following
the distribution µ;

5 E[f(µ)] : =
∫
f(x)dµ(x) for a probability distribution

function µ and any function f ;

6 DtX : the Malliavin derivative of any random variable or
vector X for t ∈ [0, T ].
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Problem setting

Consider a driver g and an FT measurable random variable X,
such that the following BSDE{

dYt = g(t, Yt, Zt)dt+ Z ′tdBt,

YT = X,
(1)

admits a unique adapted solution (Y (·), Z(·)). For example,
X ∈ L2(FT ) and g is a Lipschitz function.

We call Y0 the g-expectation of X, denoted by Eg[X].

Important Bibliography
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Definition

A distribution µ is called hedgeable (or replicable) via BSDE (1)
(or equivalently, its driver g), if there exists (Y (·), Z(·)) following
the (1) with YT ∼ µ.

Efficient Hedging Problem

If µ is a hedgeable distribution via a driver g, the problem of
efficient hedging µ via the driver g is

inf
X∼µ

Eg[X]. (2)

We only consider square-integrable distributions µ, that is,
probability distributions satisfying E[µ2] <∞. In such case,
clearly we have X ∈ L2(FT ) whenever X ∼ µ.

We call a random variable X∗ an optimal solution, if X∗ ∼ µ
and Eg[X∗] = infX∼µ Eg[X].
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Linear Case

Lemma 1

If g(t, y, z) = rty + θtz + δt, with r, θ bounded and δ is square
integrable, then

Eg[X] = E[ρTX]−
∫ T

0

E[δsρs]ds.

where ρt = exp
(
−
∫ t
0
(rs + 1

2‖θs‖
2)ds−

∫ t
0
θ′sdBs

)
.

Hardy-Littlewood Inequality

If a square integrable r.v. η is atomless, then

inf
X∼µ

E[ηX] = E[ηX∗] =

∫ 1

0

F−1η (1− p)µ−1(p)dp,

where X∗ = µ−1(1− Fη(η)) is the unique random variable ∼ µ that is
anti-comonotonic with η.
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Linear Case

Theorem.

With same the driver g(t, y, z) = rty + θ′tz + δt as above, the
efficient Hedging problem has the optimal value

inf
X∼µ

Eg[X] =

∫ 1

0
F−1ρT

(1− p)µ−1(p)dp−
∫ T

0
E[δsρs]ds,

where ρt is defined by Lemma 1, and X∗ = µ−1(1− FρT (ρT )) is
its unique optimal solution, provided that ρT is atomless.

Remark

If both rt and θt are determinist processes, then ρT is atomless.
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First experiment

Concave Case as in [EPQ97]

Suppose g is concave in (y, z). Let

ĝ(t, α, β) = sup
y,z

(
g(t, y, z)− αy − β′z

)
Then

g(t, y, z) = inf
α,β

(
ĝ(t, α, β) + αy + β′z

)
.

Let h(t, y, z;α, β) = ĝ(t, α, β) + αy + β′z. By [EPQ97]

Eg[X] = sup
(α,β)∈A

Eh(α,β)[X],

with (α, β) ∈ A := {E
∫ T
0 g2(t, α, β)dt <∞}. So that

inf
X∼µ

Eg[X] = inf
X∼µ

sup
(α,β)∈A

Eh[X] ≥ sup
(α,β)∈A

inf
X∼µ

Eh[X].
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Second Experiment.

We consider a market when deposit and loan rates are not same

loan rate Rt and deposit rate rt such that Rt ≥ rt
σt be the an invertible volatility matrix,

θt be the risk premium of the market, i.e., θt = σ−1t (bt − rt1),

All above processes are deterministic and uniformly bounded.

For a small investor, his (self-financing) wealth process Yt
with portfolio π to hedge a random payoff X follows a BSDE:{
dYt = (rtYt + θ′tσ

′
tπt − (Rt − rt)(Yt − 1′πt)

−)dt+ π′tσtdBt,

YT = X.

The driver is g(t, y, z) = rty + θ′tz − (Rt − rt)(y − 1′(σ′t)
−1z)−.
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Comparison Result.

Theorem [Comparison Principle]

Let (Y i(·), Zi(·)) be the solutions of the BSDE (1) with
parameters (gi, Xi), i = 1, 2, respectively. If

X1 ≥ X2, g1(t, Y
1
t , Z

1
t ) ≤ g2(t, Y 1

t , Z
1
t ), ∀ 0 ≤ t ≤ T ;

or

X1 ≥ X2, g1(t, Y
2
t , Z

2
t ) ≤ g2(t, Y 2

t , Z
2
t ), ∀ 0 ≤ t ≤ T ;

then Y 1
t ≥ Y 2

t for all 0 ≤ t ≤ T .
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D1,2 be the set of random variables or vectors ξ, which admits
a Malliavin derivative Dtξ for t ∈ [0, T ], such that

‖ξ‖1,2 = E‖ξ‖2 +

∫ T

0
‖Dsξ‖2 ds < +∞.

By Malliavin calculus + Comparison principle,

Theorem. [EPQ97]

Y (·) follows BSDE with X ∈ D1,2.

If 1′(σ′t)
−1DtX ≥ X, dP × dt-a.s., then Yt ≡ Y t, where

(Y (·), Z(·)) is the solution of the linear BSDE{
dY t = (RtY t + (θs − (Rs − rs)σ−1s 1)Zt)dt+ Z

′
tdBt,

Y T = X.
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Continue...

In fact, Y t ≡ ρ−1t E[ρTX|Ft], where

ρt = exp

(
−
∫ t

0

(
Rs + 1

2‖θs − (Rs − rs)σ−1s 1‖2
)
ds

−
∫ t

0
(θs − (Rs − rs)σ−1s 1)′dBs

)
. (3)

If 1′(σ′t)
−1DtX ≤ X, dP × dt-a.s., then Yt ≡ Ỹt, where

(Ỹ (·), Z̃(·)) is the solution of the linear BSDE{
dỸt = (rtỸt + θ′tZ̃t)dt+ Z̃ ′tdBt,

ỸT = X.

In fact, Ỹt ≡ ρ−1t E[ρTX|Ft].
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Proposition.

With same assumptions,

inf
X∼µ

Eg[X] ≤ min
{
E[ρT X̃],E[ρTX]

}
,

where ρt and ρt are defined as above, X̃ = µ−1(1− FρT (ρT )) and
X = µ−1(1− FρT (ρT )). Moreover,

if 1′σ−1t DtX̃ ≤ X̃, dP × dt-a.s., then

CaseI : inf
X∼µ

Eg = Eg[X̃] = E[ρT X̃],

if 1′σ−1t DtX ≥ X, dP × dt-a.s., then

CaseII : inf
X∼µ

Eg[X] = Eg[X] = E[ρTX],
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Theorem.

For all 0 ≤ t ≤ T
If µ(0−) = 0 and 1′(σ′t)

−1θt ≤ 0, then Case I holds.

If µ(0) = 1 and 1′(σ′t)
−1(θt − (Rt − rt)σ−1t 1) ≥ 0, then Case

II holds.

Let f(x) = µ−1(1− FρT (x)) and c = supt∈[0,T ] 1
′(σ′t)

−1θt, if

f(x) ≥ −cxfx(s), x > 0

then Case I holds.

Proof. Chain rule for Malliavin Calculus.

Remark.

If we take σt =

(
4 0.1

0.1 1

)
, θt =

(
1.9
0.1

)
, then 1′(σ′t)

−1θt ≤ 0. In fact

1′(σ′t)
−1θt ≤ 0 ⇔ 1′(σ′tσt)

−1(bt − rt) ≤ 0,

1′(σ′t)
−1(θt − (Rt − rt)σ−1t 1) ≥ 0 ⇔ 1′(σ′tσt)

−1(bt −Rt) ≥ 0.
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Another Point of View

Special cases.

There are two important examples in theory of g-expectation:

gk(z) = k|z|, g−k(z) = −k|z|.

By comparison principle, if g(z) satisfies Lipschitz condition
for some constant k, then

Maybe some boundary for efficient hedging problem

Egk [X] ≤ Eg[X] ≤ Eg−k [X]

⇒ inf
X∼µ

Egk [X] ≤ inf
X∼µ

Eg[X] ≤ inf
X∼µ

Eg−k [X]
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gk(z) = −k|z|

Consider normal distribution µ = N(m,σ). For a ≥ 1, let
ξa = m+

√
σaB 1

a
∼ N(m,σ), then

Zξ
a

t =
√
σa1{t≤ 1

a
}.

So

E[ξ] ≤ inf
ξ∼µ

Y ξ
0 ≤ inf

a≥1
Y ξa

0 = inf
a≥1

(
E [ξ] + k

√
σ

a

)
= E [ξ] .

Proposition

If E[µ2] < +∞, then

inf
X∼µ

Eg−k [X] = E [µ] .
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Sketch of Proof.

For a distribution µ, set X = µ−1 (ΦT (BT )) ∼ µ. By non-linear
Feymann-Kac formula, and scale changing of Brownian motion

Xα = µ−1
(

ΦT

(√
αBT

α

))
∼ µ, for α ≥ 1, we can construct a sequence

Y
α

t , such that

Eg−k [X] = Y
α

0 = E[X] +
1√
α
E[

∫ T

0

k
∣∣∣Zαs ∣∣∣ ds].

We can prove that Z
α

s is uniformly square integrable, which yields

inf
X∼µ

Eg[X] ≤ lim
α→∞

Y
α

0 ≤ E[X] + lim
α→∞

√
T√
α

(
CE[X2]

) 1
2 = E[X].

Obviously Eg−k [X] ≥ E[X] by definition of g-expectaion.

Corollary

For any Lipschitz function g(z), efficient hedging problem is
majored by

inf
X∼µ

Eg[X] ≤ E [µ] .
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Small Generalization

Assumption

The driver g(t, z) is a deterministic function of (t, z), and satisfies

Non-positivity: g(t, z) ≤ 0;

Lipschitz continuity: |g(t, z1)− g(t, z2)| ≤ K‖z1 − z2‖, K > 0;

Positive homogeneousity: g(t, αz) = αg(t, z), for any α ≥ 0.

Remark

The drivers g(t, z) that satisfy assumption must be of the form

g(t, z) ≡ −A′tz+ − C ′tz−.

Theorem.

If a driver g satisfies above assumptions. Then

inf
X∼µ

Eg[X] = E[µ],

for any distribution µ. Mingyu Xu 2019-5, Sorbonne University



gk(z) = k|z|

Consider normal distribution µ = N(m,σ). Let
ξn = m+

√
σaBT

a
∼ N(m,σ), for a ≥ 1, then

Zξ
a

t =
√
σa1{t≤ 1

a
}.

So

inf
ξ∼µ

Y ξ
0 ≤ inf

a≥1
Y ξa

0 = inf
a≥1

(
E [ξ]− k

√
σ

a

)
= E [ξ]− k

√
σ.

Proposition.

Given a distribution µ, set X∗ = µ−1 (ΦT (BT )) ∼ µ. We consider

Xα = µ−1
(

ΦT

(√
αBT

α

))
∼ µ, for α ≥ 1, then

inf
X∼µ

Egk [X] ≤ inf
α

Egk [Xα] = Egk [X∗] ≤ E[µ].
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Law-invariant g-expectation

Definition [Law-invariant g-expectation]

Given a distribution µ, we call a driver g is µ-invariant, if Eg[X]
are the same, denoted as Eg[µ] for all X ∼ µ. A g-expectation (or
its driver g) is called law-invariant if it is µ-invariant for any
square-integrable µ.

Example. Entropy measure

The driver g(t, y, z) ≡ −1
2z

2 is law-invariant. By Itô’s formula

d eYt = eYtZ ′tdBt.

Hence eY0 = E[eYT ] = E[eµ] if YT ∼ µ. In another word,
Eg[X] = log

(
E[eµ]

)
for any X ∼ µ, which is µ-invariant.
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Law-invariant g-expectation

Theorem. [when g not depending on t]

Each time-invariant driver of the form g(t, y, z) ≡ −f(y)‖z‖2 is
law-invariant and

Eg[µ] = ϕ−1
(
E[ϕ(µ)]

)
,

for any distribution µ such that the right hand side is well-defined,
where

ϕ(x) =

∫ x

0
exp

(
2

∫ y

0
f(s)ds

)
dy.

Experiment of g may depend on t is still ongoing.....

As well as applications in portfolio selection problem....
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Thanks you!

Happy Birthday!

4XÀ°

Æ'Hì
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