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0 Convex order for (path-dependent) European options

@ From discrete time ARCH and Brownian diffusions
@ From discrete time. ..
@ ...to continuous time

e Multidimensional extension (with A. Fadili, 2017)

© Application to MOT (with B. Jourdain, 2019)
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Definitions

Definition (Convex order, peacock)

(a) Two R9%valued random vectors U, V are ordered in convex order,
denoted
U<V

Vo :RY = R, convex, Ep(U) <Ep(V).

(b) A stochastic process (X, ),>0 defined on a probability space is a
p.c.o.c. if

u — X, is non-decreasing for the convex order.

@ In particular if U and V are integrable, rthen EU =E V
o If (Xi): is a martingale, then (X;); is a p.c.o.c.

G. PAGES (LPSM) Convex order LPSM-Sorbonne Univ. 3/41



About the converse. ..

o Kellerer's Theorem: “X is a peacock <= X is a 1-martingale”.

. . d
There exists a martingale (M;)¢>0 such that Xy = M, t > 0.
The proof is unfortunately non-constructive.
o Examples

(7'2 . - .
o o> e isa p.c.o.c. (= the vega of a call option is
non-negative in a BS model).
02[ . .
oo 1 fOT eW:="z dt is a p.c.o.c. (=> the vega of a Asian call
option is non-negative in a BS model).
@ Hirsch, Roynette, Profeta & Yor wrote a monography many explicit

“representations” of p.c.o.c. by 1-matingales with many extensions. . .
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A revival motivated by Finance. ..

> This suggests many other (new or not so new) questions !
@ Monotone convex order : [Hajek, 1985].
e Switch from BS to Local volatility models i.e o = o(x)

(““functional” convex order) ? [El Karoui-Jeanblanc-Schreve, 1998],
[Martini, 1999].

@ More general path-dependent payoff functions i.e. “path-dependent”
convex order ? [Brown, Rogers, Hobson 2001, Riischendorf, 2008].

American & Bermuda options ? [Pham 2005], [Riischendorf, 2008].

Jumpy risky asset dynamics for (X7) ? [Ruschendorf-Bergenthum,
2007].

Peacocks trough optimal transport. [Beigelbock, Tan, Touzi,
Henry-Labordeére et al, 2013].
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© Generalize and unify these results with of focus on path-dependent
payoffs (like Asian options) i.e. functional convex order.

@ Constraint: provide a constructive method of proof

o based on time discretization of continuous time (risky asset) martingale
dynamics models

e using numerical schemes that preserve the functional convex order
satisfied by the underlying process. . .

e to avoid arbitrages.

© Apply the paradigm to various frameworks (American style options,
BSDEs, jump models, stochastic integrals, etc).
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Convex order for (path-dependent) European options From discrete time ARCH and Brownian diffusions

Path-dependent European options & Brownian diffusions

Theorem (P. 2016, Sém. Prob.)

Leto,0€ Ciin ([0, T] x R,R). Let X(9) and X©) be the unique weak
solutions to

dX{? = o(t, X{)awl?, x{7) = x
dX” = 0(t, Xaw?, X\ = x,  (W)eepo.17 standard B.M.
(a) > If there exists a partitioning function € Cjin ([0, T] X R,R) s.t.
(1) k(t,.) is convex for every te [0, T],
(i) 0<o<rK<o.
> Then, for every F : C([0, T],R) — R, convex, with || . ||sup-polynomial
growth (hence || . ||sup-continuous). Then
EF(X©)) <EF(X®).

(b) Domination: If |o| < 8 = k (hence convex), the conclusion still holds
true.
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Convex order for (path-dependent) European options From discrete time ARCH and Brownian diffusions

lllustrations (of Claim (a))

Figure: Left: Convex partitioning. Right: Convex bounding.

Remarks. e When F(x) = f(x(T)) a PDE argument (maximum
principle) yields the conclusion.
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Convex order for (path-dependent) European options From discrete time ARCH and Brownian diffusions

Step 1: discrete time ARCH models

Proposition (A comparison theorem)

If all oy or all 0y are convex with linear growth and

V,ke{0,...,n—1}, ok < b,

then

Vke{O,...,n}, (Xo,...,Xn)SCVX(Y(),...,Y,,).

> Dynamics: (Zx)1<k<n be a sequence of independent, centered r.v.

Xerr = Xi + ok(Xk) Zisa,
Y1 = Yk+9k(yk)Zk+l7 k=0:n—-1, Xo=Yy=x

where oy, 0k : R — R, k =0: n—1 have linear growth.
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Convex order for (path-dependent) European options From discrete time ARCH and Brownian diffusions

> Dynamic programming: We introduce two martingales

My = E(F(Xo.n) | F£) and Nk =E(F(Yo.n) | FE), k=0:n

and the sequence of operators

Qu(p)(u) =Ep(uZyk), ue R, k=1:n.
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From discrete time ARCH and Brownian diffusions

Convex order for (path-dependent) European options

Jensen'’s Inequality (not really) revisited = Key Lemma

Lemma (Jensen's Inequality revisited)

Let Z : (2, A,P) — R be an (integrable) centered r.v.

> Let p: R — R, such that
VueR?, Qp(u) :=Ep(uZ) is well defined in R.

If ¢ is convex, then Q is convex, attains its minimum at 0 so that
Qy is non-decreasing on R, non-increasing on R_.

> If Z has a symmetric distribution, then Qy is an even function and

Vae Ry, sup Qp(u) = Qp(a).

|u[<a
v
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From discrete time ARCH and Brownian diffusions

Convex order for (path-dependent) European options

Jensen's Inequality (not really) revisited = Key Lemma

Lemma (Jensen's Inequality revisited)
Let Z : (2, A,P) — R be an (integrable) centered r.v.
> Let p: R — R, such that
VueR?, Qp(u) :=Ep(uZ) is well defined in R.

If ¢ is convex, then Q is convex, attains its minimum at 0 so that
Qy is non-decreasing on R, non-increasing on R_.

> If Z has a symmetric distribution, then Qy is an even function and

Vae Ry, sup Qp(u) = Qp(a).

|u[<a
v

Proof. The function Q¢ is clearly convex and by Jensen's Inequality
Qe(u) = ¢(E(uZ)) = p(uE Z) = ¢(0) = Qy(0).

Hence @ ¢ is convex, attains its minimum at v = 0 hence is

non-increasing on R_ and non-decreasing on R. U
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Convex order for (path-dependent) European options From discrete time ARCH and Brownian diffusions

@ A (first) backward induction and the definition of the kernels Qx imply
Mk = (Dk(XO:k) and Nk = \Uk(Yo:k), k:O,...,n.
where &4, W, : RT3 R, k=0,...,n are recursively defined by

®n:=F, Pu(x0k) = [E Pry1(X0:, Xk + UZk41)] |y, (1)
= (Qk+1(bk+1(xo;k,xk + )) (ok(xk)), k=0:n—1.

Likewise

Vo= F, V(o) = (Que1 Vi1 (voks vet+)) (O (yk)), k=0:n—L1.
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Convex order for (path-dependent) European options From discrete time ARCH and Brownian diffusions

> Assume now that all functions o, are > 0 and convex:
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Convex order for (path-dependent) European options From discrete time ARCH and Brownian diffusions

> Assume now that all functions o, are > 0 and convex:

@ One has
(G . Rk+2 Tﬁ R convex)
((X();k, u) = (Qr+1G(x0:ks xk+.))(v) = EG(x0:k, Xk +uZ)) is convex. . )
so that, by the revisited Jensen’s Lemma,
(1) u— (Qus1G(x0uk; Xk +-))(u) is | on (—00,0) and 1 on (0, +00).
&

(ii) Propagation of the convexity in xp..
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Convex order for (path-dependent) European options From discrete time ARCH and Brownian diffusions

> Assume now that all functions o, are > 0 and convex:

@ One has
(G : Rk+2 Tﬁ R convex)
((X();k, u) = (Qr+1G(x0:k, Xk+.))(u) = EG(x0:k, Xk+uZ)) is convex. . )
so that, by the revisited Jensen’s Lemma,
(1) u— (Qxs1G(x0:k, Xk + -))(u) is | on (—0o0,0) and 1 on (0, +00).
&
(ii) Propagation of the convexity in xp..

@ (Second) backward induction = all functions ®, are convex.
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Convex order for (path-dependent) European options From discrete time ARCH and Brownian diffusions

> Assume now that all functions o, are > 0 and convex:

@ One has
(G CRFF2 R convex)
N8

((X();k, u) = (Qr+1G(x0:k, Xk+.))(u) = EG(x0:k, Xk+uZ)) is convex. . )
so that, by the revisited Jensen’s Lemma,
(1) u— (Qxs1G(x0:k, Xk + -))(u) is | on (—0o0,0) and 1 on (0, +00).
&
(ii) Propagation of the convexity in xp..
@ (Second) backward induction = all functions ®, are convex.
@ (Third) backward induction = &, <WV;, k=0:n—1.
First note that ¢, =W, = F. If &, 1 < W4, then
Pru(x0k) = (Qua1Prra (X005 Xk + -)) (ok(xx))
< (Qur1Pry1 (Xoks Xk 4 -)) (O (%))
< (Qua 1 Vi1 (x0:k Xk + ) (O (X)) = Wie(xo:k)-
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Convex order for (path-dependent) European options From discrete time ARCH and Brownian diffusions
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Convex order for (path-dependent) European options From discrete time ARCH and Brownian diffusions

End of discrete times

> If all 8, > 0 and convex:
This time, one shows that:

@ the functions Wy are convex, k =0,...,n

0P, <V, =P, <V, k=0,...,n—1.

Remark. The discrete time setting has its own interest.
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Convex order for (path-dependent) European options From discrete time ARCH and Brownian diffusions

Step 2 of the proof: Back to continuous time
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Convex order for (path-dependent) European options From discrete time ARCH and Brownian diffusions

Step 2 of the proof: Back to continuous time

> Euler scheme(s): Discrete time Euler scheme with step % starting at x
is an ARCH model. For X(@): for k =0,...,n—1,

KM = KO 4 (e KO (Weg, - W), X" = x

n
ter1

Set
Zk:Wtk_Wt;’(,,]_’ k:].,...,n

4

‘discrete time setting applies‘

Remark. Linear growth of ¢ and 6, implies

sup | X"
te[0,T]

sup [XOM| + sup

Vp>0, sup H
t€[0,T] P n>1

n>1

< +00.
P
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Convex order for (path-dependent) European options From discrete time ARCH and Brownian diffusions

From discrete to continuous time

o> Interpolation (n > 1)

@ Piecewise affine interpolator defined by
Vxon € R™, Yk =0,...,n—1, Vte [tf, tf,4],

in(x0n)(8) = = ((H41 = 0+ (£ = t)xr)

o X(@hn .= ((Xt(f)’n)kzo:n> = piecewise affine Euler scheme.
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Convex order for (path-dependent) European options From discrete time ARCH and Brownian diffusions

> F :C([0, T],R) — R convex functional (with r-polynomial growth).

Vn>1, Fn(XO:n) = F(in(XO:n))a X0:n € R,
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Convex order for (path-dependent) European options From discrete time ARCH and Brownian diffusions

> F :C([0, T],R) — R convex functional (with r-polynomial growth).

Vn> ]-7 Fn(XO:n) = F(in(XO:n))a X0:n € Rn+1-
e STEP 1 (DISCRETE TIME):
F convex = F,, convex, n > 1.

Discrete time result implies: [[a(tg,.) < [[/@(t,’g,.)ﬂ < H(tf,.)ﬂ.

EF(XO") = E Fo (XS kc0:n) < E Fa (K5 k0:n)

n n
tk tk

o(0),n ~ ,
SEFn((X(E) Yiomn) = E F(XOn),
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Convex order for (path-dependent) European options From discrete time ARCH and Brownian diffusions

> F :C([0, T],R) — R convex functional (with r-polynomial growth).

Vn> ]-7 Fn(XO:n) = F(in(XO:n))a X0:n € Rn+1-
e STEP 1 (DISCRETE TIME):
F convex = F,, convex, n > 1.

Discrete time result implies: [[a(tg,.) < [[n(tg,.)ﬂ < H(tf,.)ﬂ.

B (X)) = B (5 ")ecan) < B Aol (K Do)
<EF, (()_((;)’n)kzom) —E F()?(G),n).
@ STEP 2 (TRANSFER): Key = Theorem 3.39, p.551, Jacod-Shiryaev's
book (2”d edition).

(S

Xx(@)n X a5 n— 0.

EF(X)=limEF(X@")  (idem for X©@). O
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Convex order for (path-dependent) European options From discrete time ARCH and Brownian diffusions

‘The Euler scheme is a simulable approximation‘

‘which preserves convex order. ‘
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Convex order for (path-dependent) European options From discrete time ARCH and Brownian diffusions

Application | : Local Volatility models (functional

peacocks).

e New notations (o, € are now true volatility)
dSt = St G(t, St)th, 50 =Sy > O, (r = 0)

where 7 : [0, T] x R — R is a bounded continuous function.

@ The weak solution satisfies

S — gyeli #(eS7dBS [ o255 s

@ ldem for 6.

@ We assumethat 0 <o <k < 0 and K : x — xR(t,x) is convex on the
whole real line.
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Convex order for (path-dependent) European options From discrete time ARCH and Brownian diffusions

Example of application: El Karoui-Jeanblanc-Shreve's Theorem.

Theorem (Extension of et al. theorem., P. 2016)

If there exists a function k : [0, T] x Ry — Ry such that k : x — xk(t, x)
extends into an R -valued convex function on R satisfying

(a) Partitioning: 0 <o(t,.) <k(t,.) <0(t,.) onR4, te [0, T],

or

(b) Dominating: |o(t,.)| < 6(t,.) = k(t,.) t€ [0, T].

If f : R — R convex function and p is a (finite) signed measure on [0, T]

Ef ( /0 ' s?’u(ds)) <Ef ( /0 ' ss@u(ds)) € (o0, +od].

and more generally, for every every functional F with r-polynomial growth

EF (5@')) <EF (5@) ER.

v
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Convex order for (path-dependent) European options

From discrete time ARCH and Brownian diffusions

Figure: Left: flat partitioning. Right: flat bounding (EI Karoui et al.).

@ The method of proof applies to American style options, Lévy driven
diffusions, stochastic integrals, etc.

@ 1D-Misltein scheme.
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Convex order for (path-dependent) European options From discrete time ARCH and Brownian diffusions

Application Il: Concave Local Vol. models (with A. Fadili)

@ Concave Local Volatility (CLV) models (5 CEV):
Set o(x) = xa(x) > 0 on (0,+00), o(x) =0, x <0.
dS; = o(St)dWy, Sp = sp >0, o concave and >0

such that the (unique weak) solution satisfies S; > 0, te [0, T].
@ Then, for every fixed u > 0, the concavity property implies

o(x) < (a(u) + o' (u)(x — u)>+, x€R
so that, if we set
X = (o) + /@O 1)) W, X5 =

then, for every convex vanilla payoff ¢ : Ry — R

E¢(57) < infuso E¢ (X)),
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Convex order for (path-dependent) European options From discrete time ARCH and Brownian diffusions

Te9 s T+ T/ (1)

-
M {r_‘tu]

Figure: Black-Scholes convex domination of a Local Vol. model
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Convex order for (path-dependent) European options From discrete time ARCH and Brownian diffusions

e Set O(u) := ‘(77/((:')) — u > 0 (by concavity). Hence

X{ 4 0(u) = 5o+ 6(u) +/t0,(”)(XS(U) +6(u))  dWs
——— Jo

>0

ie., Yt(”) = Xt(”) + 6(u), satisfies the Black-Scholes dynamics
t
v =y +a’(u)/ Y aw,.
0

e Example: if ¢(x) = (x — K)4 is a vanilla Call payoff

E(St - K)+ < inf Callgs (so +0(u), K + 0(u), a’(u))
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Convex order for (path-dependent) European options From discrete time ARCH and Brownian diffusions

Proposition (Tractable upper-bound)

One has

(i) u— E(YW — K), is differentiable and 2 (Y{) — K); >0 on
[max(so, K), —|—oo)

(ii) Hence

E(St—K)+ < min Callgs (so + 0(u), K + 6(u), o’ (u))

~ 0<wu<max(sp,K)

leading to a faster search for the argmin.

Practitioner’s corner: — In fact umi, lies not far from sp and K.

- - i sotK
Exploration starting from =27=.
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Convex order for (path-dependent) European options From discrete time ARCH and Brownian diffusions

When the drift comes back into the game:
for diffusions

Theorem (Extended Hajek's Theorem, P. 2016, Sém. Prob. XLVIII,)
Leto,0€ Cjin ([0, T] x R,R). Let X(9) and X©) be the unique weak

solutions to
dx( = b(t,X{)dt + o(t, X)W, Xx{7) = x
dx = b(t, XD)dt + 0(t, XD)aW? x = x,
with (Wﬁ'))te[m] is a standard dim B.M. Then,
(1) b(t,.) convex te [0, T] and |b(t,x)| < C(1 + |x]).
(ii) k-partitioning or dominating assumption.
> Then, for every f : R — R, convex and non-decreasing, with polynomial
growth,

Ef(X() <Ef(X?).

v
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Multidimensional extension (with A. Fadili, 2017)

Multidimensional extension (with A. Fadili, 2017)

@ Pre-order < on M(d, q,R): let A, Be M(d,q,R).
A=<B if AA*<BB* in S§(d,R).
o =<-Convexity: A function ¢ : RY — M(d, q,R) is <-convex if: for
every x, y € R9, and every A [0, 1],

d(Ax+ (1= N)y)) 2 Ad(x) + (1 — N)(y).

Proposition

Let A, Be M(d,q,R) such that A< B. Let Z ~ N (0, l;). Then, for
every <-convex function f : R & R,

E f(AZ) < E f(BZ).

@ The former theorem formally extended remains valid with these
definitions for diffusion models of the form

dX: = o(X¢)dWs, o : R — M(d, q,R), Z ~ N(0,1).
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Multidimensional extension (with A. Fadili, 2017)

Theorem (with A. Fadili, 2017)
Leto,0€ Cjn, ([0, T] x R, M(d, q,R)), W), WO q-S.B.M.. Let X(*)
and X(©) pe the unique weak solutions to

dX{? = o(t, X{)awl?, x{7) = x

dX” = 0(t, X dW?, XD = x,  (W)sepo.1p standard B.M

(a) > If there exists a partitioning function
K€ Ciin ([0, T] x R, M(d, g, R)) s.t.

(i) w(t,.): RY = M(d,q,R) is <-convex for every tc [0, T,
(i) o=r<80.

> Then, for every F : C([0, T],RY) — R, convex, with || . ||sup-polynomial
growth (hence || . ||sup-continuous). Then
EF(X)) <EF(X®).

(b) Domination: If =6 = r (hence convex), the conclusion still holds
true.

4
G. PAGES (LPSM) Convex order LPSM-Sorbonne Univ. 28 /41



Multidimensional extension (with A. Fadili, 2017)

Extensions

This provides as systematic approach whcih sucessfully works with

Jump diffusion models,

Path-dependent American style options,

e BSDE (without “Z" in the driver),
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Application to MOT (with B. Jourdain, 2019)

Another kind of application: MOT

@ Let Xp., be a martingale on a probability space (2, .4, P) with
distribution g€ P((RY)"*1) and marginal distributions p, k = 0 : n.

o Let c: (R9)"™1 — R, be a cost/payoff fucntion (exotic option. ..).

@ Assume the marginal distributions are fixed (as the result of a
calibrations on vanilla options). Solve

(MOT) = inf /sup {EC(XO;,,), X martingale, Xj ~ Mk}

@ Yields bounds on the exotic option premium.
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Application to MOT (with B. Jourdain, 2019)

@ Think of X = (Xp.,) as an Euler time discretization scheme of a
diffusion.

@ Then
Xir1 = Xk + ﬁk(Xk)ZkJrl, k=0:n—1, Z;i.id.

with 9% : RY — My 4, Z1 ~ N(0, Iy).
@ The (MOT) problem cannot be solved as set : it requires
e a space discretization:

(207217"' 72n) ~ (XO7X17"' 7Xn)

where each )/(\k takes finitely many values.
o satisfying monotony for convex order (to avoid arbitrages):

XO chx Xl chx o chx Xna

e comparison results for convex order with respect to X,
o A complexity kept under control.
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Application to MOT (with B. Jourdain, 2019)

A solution: Dual quantization at level N > 1!

o Let Y:(,A4,P) = R? Y ~ pu, be a random vector lying in L(P).
@ Let N denote a fixed level N > 1.

@ The optimal dual quantization problem introduced by [Wilbertz-P.,
'12] reads

dpn(Y) = mf{HY Y[, X (Qx Qo A® Ao, P & Pg) — RY,
card Y(Q x Qo) < N and E(Y|Y) = Y}
or, equivalently,

d

(1) = inf {H Y = Vlp, (Y, V) : (Q AP) - RY x RY,

Y~ B(Y [ V) =Y, card(V(Q)) < /v}.
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Theorem (P-Wilbertz, SINUM '12)
Assume Y € L=(Q, A,P) with card(Y(Q)) > N}.

(a) Let T C RY, T D conv(supp(L(Y)) with points in general position.
Then

ydel,r _ Proj/(Y, Uo,11)

with Proj/(¢, u) Z [Z X; -

(&)
—~ = {zv<s)<u<zv 5)} ©

where (Di(T))1<k<m is a Delaunay hyper-triangulation of conv(I*N)
satisfies the dual stationarity equation

E(f/del,r | Y) —Y

and ||y — VoI, = ig(f{HY —V|p, (Y, V) (2, AP) 5 RY xT,

Y~ B(Y V) = Y, card(V(Q)) < /\/}.

G. PAGES (LPSM) Convex order LPSM-Sorbonne Univ. 33 /41



Application to MOT (with B. Jourdain, 2019)

(b) The above infimum in d, y(X) is always a minimum: there exists a
grid TN = {xq, ... Xy} C RY of size N whose points are in general
position such that

dpn(Y) = Y = YN, with YN = Projfely (Y, Ug )
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Application to MOT (with B. Jourdain, 2019)

The Delaunay projection/splitting operator

Figure: Delaunay splitting of X(w).
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Application to MOT (with B. Jourdain, 2019)

Dual quantization of (B, sup;cjo 1) Br) (truncated)
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Application to MOT (with B. Jourdain, 2019)

Dual quantization of (B, sup;cjo 1) Br) (truncated)
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Application to MOT (with B. Jourdain, 2019)

Doubly quantized scheme (martingale ARCH model) |

@ The (martingale) dynamics. Set
Xk = Fk—l(Xk—17 Zk), (Zk) i.i.d; NN(O; Iq)
with Fr_1(x,z) = x+9_1(x)zk=1,...,n— 1.

@ Pre-processing. Discretize the Gaussian white noise by
¢:RY T4 CRY,

Zi=0(Zk) st. EZy =0, Zx — Zx L> Z4,

Example: Optimal Voronoi quantization i.e. Zx = Projtg (Zx),
k = 1: n which satisfies

E(Zk|2k)sz, k:].,...,n.
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Application to MOT (with B. Jourdain, 2019)

Doubly quantized scheme (martingale ARCH model) Il

@ The doubly quantized scheme. Define by induction, based on grids
o, - 5% I,
(i) Xo = Proj>"(Xo) (Voronoi “nearest neighbour” projection)
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Application to MOT (with B. Jourdain, 2019)

Doubly quantized scheme (martingale ARCH model) Il

@ The doubly quantized scheme. Define by induction, based on grids
o, - 5% I,
(i) Xo = Proj>"(Xo) (Voronoi “nearest neighbour” projection)

(ii) )~<k = Fk,l()A(k,l,Zk), k=1:n
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Application to MOT (with B. Jourdain, 2019)

Doubly quantized scheme (martingale ARCH model) Il

@ The doubly quantized scheme. Define by induction, based on grids
FO,... I,
(i) Xo = Projry"(Xo) (Voronoi “nearest neighbour” projection)
(i) Xe = Feo1(Xe-1,24), k=1:n
(iii) X = Proje(Xs, U)
where
(Us:n) is i.id. U(]0,1])-distributed, 1L (Z1.5), 1L Xo.

Proposition (Jourdain-P., '19)

(a) The sequence ()?k) k=0:n Is martingale Markov chain so that

~

XO >cvx Xl <ewx t Zewx Xn-

(b) Moreover, if the 0 are convex (in a matrix sense of d or q > 2) then

Vk=0:n X <exX
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Application to MOT (with B. Jourdain, 2019)

A short proof of (a)

o Xo= Projfe"(Xo) is lNo-valued hence has compact support.

o If )A(k_l have compact support, then)?k has compact support since Zk
has. Hence there exists [, D COHV(Xk(Q)) and one can define

~

Xy = Projde! (X, U).
@ The Markov property is obvious since )?k = :Ek_l()?k_l, (U, Zk)).
o Finally, by the universal dual stationarity property

E(Xy |0(Xo, Ze, 0 = 1: k=1, Up, € = 1, k—1)) = [EProjd(x, Uy)] %,
and the martingality of the “kernel” Fy_; yields
E(Xi| Fi2i ") = X

so that R R
E(X| FooiY) = Xea
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Application to MOT (with B. Jourdain, 2019)

Error bound

Theorem (Jourdain-P. '19)

Assume all ¥y are [¥]1ip-Lipschitz continuous and all quantizations are

optimal /optimized at respective levels |I'| = Ny and |I'4| = N. For every
k=0:n,

2
v vor k02 (XO)
X = Xell3 < (C359)* (1 + qlRsp) =

N/
k 5 P
v 03:4(2) = 0547 (Xk)
+ 3 (1 +alo,) " | e (e 1) IB(C)? K,Z/q + (Cﬂ)z%
=1 k
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