Continuous time Principal Agent and optimal planning

Nizar Touzi

Ecole Polytechnique, France

Nicole 3×25 , May 23, 2019

 Principal delegates management of output process X, only observes X

• Agent devotes effort $a \Longrightarrow X^a$, chooses optimal effort by

$$V_A := \max_{\mathbf{a}} \mathbb{E} U_A (-c(\mathbf{a}))$$

- Principal delegates management of output process X, only observes X pays salary defined by contract $\xi(X)$
- Agent devotes effort $a \Longrightarrow X^a$, chooses optimal effort by

$$V_A(\xi) := \max_{\mathbf{a}} \mathbb{E} \ U_A(\xi(X^{\mathbf{a}}) - c(\mathbf{a})) \implies \hat{a}(\xi)$$

Principal chooses optimal contract by solving

$$\max_{\xi} \mathbb{E} U_P \left(X^{\hat{a}(\xi)} - \xi(X^{\hat{a}(\xi)}) \right)$$
 under constraint $V_A(\xi) \geq \rho$

→ Non-zero sum Stackelberg game

- Principal delegates management of output process X, only observes X
 pays salary defined by contract ξ(X)
- Agent devotes effort $a \Longrightarrow X^a$, chooses optimal effort by

$$V_A(\xi) := \max_{\mathbf{a}} \mathbb{E} \ U_A(\xi(X^{\mathbf{a}}) - c(\mathbf{a})) \implies \hat{\mathbf{a}}(\xi)$$

Principal chooses optimal contract by solving

$$\max_{\xi} \mathbb{E} \ U_P \big(X^{\hat{a}(\xi)} - \xi (X^{\hat{a}(\xi)}) \big) \quad \text{under constraint} \quad V_A(\xi) \geq \rho$$

⇒ Non-zero sum Stackelberg game

- Principal delegates management of output process X, only observes X
 pays salary defined by contract ξ(X)
- Agent devotes effort $a \Longrightarrow X^a$, chooses optimal effort by

$$V_A(\xi) := \max_{\mathbf{a}} \mathbb{E} \ U_A(\xi(X^{\mathbf{a}}) - c(\mathbf{a})) \implies \hat{\mathbf{a}}(\xi)$$

Principal chooses optimal contract by solving

$$\max_{\xi} \mathbb{E} U_P \big(X^{\hat{a}(\xi)} - \xi (X^{\hat{a}(\xi)}) \big) \quad \text{under constraint} \quad V_A(\xi) \ge \rho$$

⇒ Non-zero sum Stackelberg game

(Static) Principal-Agent Problem ==> Continuous time

- Principal delegates management of output process X, only observes X pays salary defined by contract $\xi(X)$
- Agent devotes effort $a \Longrightarrow X^a$, chooses optimal effort by

$$V_A(\xi) := \max_{\mathbf{a}} \mathbb{E} U_A(\xi(X^{\mathbf{a}}) - c(\mathbf{a})) \implies \hat{a}(\xi)$$

Principal chooses optimal contract by solving

$$\max_{\xi} \mathbb{E} U_P \big(X^{\hat{a}(\xi)} - \xi (X^{\hat{a}(\xi)}) \big) \quad \text{under constraint} \quad V_A(\xi) \ge \rho$$

⇒ Non-zero sum Stackelberg game

Principal-Agent problem formulation

Contract $C = (\tau, \pi, \xi)$

au $\mathbb{F}-$ stopping time, π $\mathbb{F}-$ adapted, and ξ $\mathcal{F}_{ au}-$ mble

Agent problem

 $\mathbb{P} \in \mathcal{P}$: weak solution of Output process :

$$dX_t = b_t(X, \nu_t)dt + \sigma_t(X, \nu_t)dW_t^{\mathbb{P}} \quad \mathbb{P} - \text{a.s.}$$

for some ν valued in U

Principal problem choose among acceptable contracts $= \{C : V^A(C) > 0\}$

$$\Xi_{
ho} := \left\{ \mathbf{C} : V_0^A(\mathbf{C}) \geq \rho \right\}$$

best contract, given Agent's optimal response $\mathbb{P}^*(\mathbb{C})$

$$V_0^P := \sup_{\mathbf{C} \in \Xi_{
ho}} \mathbb{E}^{\,\mathbb{P}^*(\mathbf{C})} \Big[U \Big(\ell(X) - \xi(X) - \int_0^ au \pi_t(X) dt \Big) \Big]$$

Principal-Agent problem formulation

Contract $C = (\tau, \pi, \xi)$

 τ F-stopping time, π F-adapted, and ξ \mathcal{F}_{τ} -mble

Agent problem

 $\mathbb{P} \in \mathcal{P}$: weak solution of Output process:

$$dX_t = b_t(X, \nu_t)dt + \sigma_t(X, \nu_t)dW_t^{\mathbb{P}} \mathbb{P} - \text{a.s.}$$

for some ν valued in U

Principal problem choose among acceptable contracts

$$\Xi_{\rho} := \{ \mathbf{C} : V_0^{\mathbf{A}}(\mathbf{C}) \geq \rho \}$$

best contract, given Agent's optimal response $\mathbb{P}^*(C)$

$$V_0^P := \sup_{\mathbf{C} \in \Xi_{
ho}} \mathbb{E}^{\,\mathbb{P}^*(\mathbf{C})} \Big[U \Big(\ell(X) - \xi(X) - \int_0^{ au} \pi_t(X) dt \Big) \Big]$$

Mean field games and optimal planning

Principal-Agent problem formulation

Contract $C = (\tau, \pi, \xi)$

 τ \mathbb{F} -stopping time, π \mathbb{F} -adapted, and ξ \mathcal{F}_{τ} -mble

Agent problem

$$V_0^A(extsf{C}) := \sup_{\mathbb{P} \in \mathcal{P}} \mathbb{E}^{\mathbb{P}} \Big[\xi(X) + \int_0^ au ig(\pi_t - c_t(
u_t)ig) dt \Big]$$

 $\mathbb{P} \in \mathcal{P}$: weak solution of Output process:

$$dX_t = \sigma_t(X, \nu_t) (\lambda_t(X, \nu_t) dt + dW_t^{\mathbb{P}}) \mathbb{P} - \text{a.s.}$$

for some ν valued in U

Principal problem choose among acceptable contracts

$$\Xi_{\rho} := \{ \mathbf{C} : V_0^{\mathcal{A}}(\mathbf{C}) \geq \rho \}$$

best contract, given Agent's optimal response $\mathbb{P}^*(C)$

$$V_0^P := \sup_{\mathbf{C} \in \Xi_{
ho}} \mathbb{E}^{\,\mathbb{P}^*(\mathbf{C})} \Big[U \Big(\ell(X) - \xi(X) - \int_0^ au \pi_t(X) dt \Big) \Big]$$

A general solution approach

• Path-dependent Hamiltonian for the Agent problem :

$$H_t^{\pi}(\omega, \mathbf{z}, \gamma) := \sup_{\mathbf{u} \in \mathbf{U}} \left\{ b_t(\omega, \mathbf{u}) \cdot \mathbf{z} + \frac{1}{2} \sigma_t \sigma_t^{\top}(\omega, \mathbf{u}) : \gamma + \pi_t(\omega) - c_t(\omega, \mathbf{u}) \right\}$$

• For $Y_0 \in \mathbb{R}$, $Z, \Gamma \mathbb{F}^X$ — prog meas, define \mathbb{P} —a.s. for all $\mathbb{P} \in \mathcal{P}$

$$Y_t^{Z,\Gamma} = Y_0 + \int_0^t Z_s \cdot dX_s + \frac{1}{2}\Gamma_s : d\langle X \rangle_s - H_s^{\pi}(X,Z_s,\Gamma_s)ds$$

Proposition

$$V_Aig(au,\pi,Y^{Z,\Gamma}_ auig)=Y_0.$$
 Moreover \mathbb{P}^* is optimal iff

$$\nu_t^* = \operatorname{Arg\max}_{u \in U} H_t^{\pi}(Z_t, \Gamma_t) = \hat{\nu}(Z_t, \Gamma_t)$$

Proof classical verification argument in stochastic control

A general solution approach

• Path-dependent Hamiltonian for the Agent problem :

$$H_t^{\pi}(\omega, z, \gamma) := \sup_{\mathbf{u} \in U} \left\{ b_t(\omega, \mathbf{u}) \cdot z + \frac{1}{2} \sigma_t \sigma_t^{\top}(\omega, \mathbf{u}) : \gamma + \pi_t(\omega) - c_t(\omega, \mathbf{u}) \right\}$$

• For $Y_0 \in \mathbb{R}$, $Z, \Gamma \mathbb{F}^X$ – prog meas, define \mathbb{P} —a.s. for all $\mathbb{P} \in \mathcal{P}$

$$Y_t^{Z,\Gamma} = Y_0 + \int_0^t Z_s \cdot dX_s + \frac{1}{2}\Gamma_s : d\langle X \rangle_s - H_s^{\pi}(X,Z_s,\Gamma_s)ds$$

Proposition

$$V_{A}ig(au,\pi,Y^{Z,\Gamma}_{ au}ig)=Y_{0}.$$
 Moreover \mathbb{P}^{st} is optimal iff

$$u_t^* = \operatorname{Argmax}_{u \in U} H_t^{\pi}(Z_t, \Gamma_t) = \hat{\nu}(Z_t, \Gamma_t)$$

Proof classical verification argument in stochastic control

Principal problem restricted to revealing contracts

Dynamics of the pair (X, Y) under "optimal response"

$$dX_{t} = b_{t}(X, \hat{\nu}(Z_{t}, \Gamma_{t}))dt + \sigma_{t}(X, \hat{\nu}(Z_{t}, \Gamma_{t}))dW_{t}$$

$$dY_{t}^{Z,\Gamma} = Z_{t} \cdot dX_{t} + \frac{1}{2}\Gamma_{t} : d\langle X \rangle_{t} - H_{t}^{\pi}(X, Z_{t}, \Gamma_{t})dt$$

is a (1 state augmented) controlled SDE with controls $(\pi, \mathbb{Z}, \Gamma)$

⇒ Principal's value function under revealing contracts :

$$V_{P} \geq V_{0}(X_{0}, Y_{0}) := \sup_{\substack{(\tau, \pi) \\ (Z, \Gamma) \in \mathcal{V}}} \mathbb{E}\Big[U\Big(\ell(X) - Y_{\tau}^{Z, \Gamma} - \int_{0}^{\tau} \pi_{t} dt\Big)\Big], \ \forall \ Y_{0} \geq \rho$$

$$\text{where } \mathcal{V} := \Big\{(Z, \Gamma) : \ Z \in \mathbb{H}^{2}(\mathcal{P}) \ \text{and} \ \mathcal{P}^{*}\big(Y_{T}^{Z, \Gamma}\big) \neq \emptyset\Big\}$$

Reduction to standard control problem

Theorem

Assume $V \neq \emptyset$. Then

$$V_0^P = \sup_{Y_0 \ge \rho} V_0(X_0, Y_0)$$

Given maximizer Y_0^* , the corresponding optimal controls $(\tau^*, \pi^*, \mathbf{Z}^*, \mathbf{\Gamma}^*)$ induce an optimal contract $\mathbf{C}^* = (\tau^*, \pi^*, \xi^*)$ with

$$\xi^* = Y_0^* + \int_0^T Z_t^* \cdot dX_t + \frac{1}{2} \Gamma_t^* : d\langle X \rangle_t - H_t^{\pi^*} (X, Z_t^*, \Gamma_t^*) dt$$

Sannikov '08 Cvitanić, Possamaï & NT '15 Lin, Ren, NT & Yang '19

Comments on the theorem

Examples of volatility control problems

Portfolio optimization

$$dV_t = \theta_t \cdot dS_t$$

Demand-Response programs in electricity retail market

$$dX_t = \frac{\alpha_t}{dt} + \frac{\beta_t}{dt} \cdot dW_t$$

Open to many extensions

- agent may also choose optimally to quit (Sannikov)
- many agents, many principals under competition (Possamaï &...)
- Limited liability (Possamaï & Villeneuve)

Recall the subclass of contracts

$$Y_t^{Z,\Gamma} = Y_0 + \int_0^t Z_s \cdot dX_s + \frac{1}{2} \Gamma_s : d\langle X \rangle_s - H_s(X, Y_s^{Z,\Gamma}, Z_s, \Gamma_s) ds$$

$$\mathbb{P} - \text{a.s. for all } \mathbb{P} \in \mathcal{P}$$

To prove the main result, it suffices to prove the representation

$$\text{for all } \xi \in ??? \quad \exists \; \big(Y_0,Z,\Gamma\big) \quad \text{s.t.} \quad \xi = Y_T^{Z,\Gamma}, \; \mathbb{P}-\text{a.s. for all } \mathbb{P} \in \mathcal{P}$$

OR, weaker sufficient condition

for all
$$\xi \in ??$$
 $\exists (Y_0^n, Z^n, \Gamma^n)$ s.t. " $Y_T^{Z^n, \Gamma^n} \longrightarrow \xi$ "

Recall the subclass of contracts

$$Y_t^{Z,\Gamma} = Y_0 + \int_0^t Z_s \cdot dX_s + \frac{1}{2} \Gamma_s : d\langle X \rangle_s - H_s(X, Y_s^{Z,\Gamma}, Z_s, \Gamma_s) ds$$

$$\mathbb{P} - \text{a.s. for all } \mathbb{P} \in \mathcal{P}$$

To prove the main result, it suffices to prove the **representation**

$$\text{for all } \xi \in ?? \quad \exists \; \big(Y_0, Z, \Gamma\big) \quad \text{s.t.} \; \; \xi = Y_T^{Z, \Gamma}, \; \mathbb{P} - \text{a.s. for all } \mathbb{P} \in \mathcal{P}$$

$$\text{ for all } \xi \in ?? \quad \exists \; \big(Y_0^n, Z^n, \Gamma^n\big) \quad \text{s.t. } \text{``} Y_T^{Z^n, \Gamma^n} \longrightarrow \xi \text{''}$$

Recall the subclass of contracts

$$Y_t^{Z,\Gamma} = Y_0 + \int_0^t Z_s \cdot dX_s + \frac{1}{2} \Gamma_s : d\langle X \rangle_s - H_s(X, Y_s^{Z,\Gamma}, Z_s, \Gamma_s) ds$$

$$\mathbb{P} - \text{a.s. for all } \mathbb{P} \in \mathcal{P}$$

To prove the main result, it suffices to prove the representation

$$\text{for all } \xi \in ?? \quad \exists \; \big(Y_0,Z,\Gamma\big) \quad \text{s.t.} \; \; \xi = Y_T^{Z,\Gamma}, \; \mathbb{P}-\text{a.s. for all } \mathbb{P} \in \mathcal{P}$$

OR, weaker sufficient condition :

$$\text{ for all } \xi \in ?? \quad \exists \; \big(Y_0^n, Z^n, \Gamma^n\big) \quad \text{s.t. } \text{``} Y_T^{Z^n, \Gamma^n} \longrightarrow \xi \text{''}$$

• Path-dependent Hamiltonian for the Agent problem :

$$H_t^{\pi}(\omega, z, \gamma) := \sup_{\mathbf{u} \in \mathbf{U}} \left\{ b_t(\omega, \mathbf{u}) \cdot z + \frac{1}{2} \sigma_t \sigma_t^{\top}(\omega) : \gamma + \pi_t(\omega) - c_t(\omega, \mathbf{u}) \right\}$$

• For $Y_0 \in \mathbb{R}$, $Z, \Gamma \mathbb{F}^X$ – prog meas, define

$$Y_t^{Z,\Gamma} = Y_0 + \int_0^t Z_s \cdot dX_s + \frac{1}{2} \Gamma_s : d\langle X \rangle_s - H_s^{\pi}(X, Z_s, \Gamma_s) ds$$

 \mathbb{P} -a.s. for all $\mathbb{P} \in \mathcal{P}$

• Path-dependent Hamiltonian for the Agent problem :

$$H_t^{\pi}(\omega, z, \gamma) := \frac{1}{2} \sigma_t \sigma_t^{\top}(\omega) : \gamma + \sup_{\mathbf{u} \in \mathbf{U}} \left\{ b_t(\omega, \mathbf{u}) \cdot z + \pi_t(\omega) - c_t(\omega, \mathbf{u}) \right\} \Big|$$

• For $Y_0 \in \mathbb{R}$, $Z, \Gamma \mathbb{F}^X$ – prog meas, define

$$Y_t^{Z,\Gamma} = Y_0 + \int_0^t Z_s \cdot dX_s + \frac{1}{2}\Gamma_s : d\langle X \rangle_s - \frac{1}{2}\sigma_t \sigma_t^\top : \gamma - H_s^\pi(X, Z_s, 0) ds$$

 \mathbb{P} -a.s. for all $\mathbb{P} \in \mathcal{P}$

Path-dependent Hamiltonian for the Agent problem :

$$H^{\pi}_t(\omega, z, \gamma) := \frac{1}{2} \sigma_t \sigma_t^{\top}(\omega) : \gamma + \sup_{\mathbf{u} \in \mathbf{U}} \left\{ b_t(\omega, \mathbf{u}) \cdot z + \pi_t(\omega) - c_t(\omega, \mathbf{u}) \right\}$$

• For $Y_0 \in \mathbb{R}$, $Z, \Gamma \mathbb{F}^X$ – prog meas, define

$$Y_t^{Z,\Gamma} = Y_0 + \int_0^t Z_s \cdot dX_s - H_s^{\pi}(X, Z_s, 0) ds$$

 \mathbb{P} -a.s. for all $\mathbb{P} \in \mathcal{P}$

• Path-dependent Hamiltonian for the Agent problem :

$$H_t^{\pi}(\omega, z, \gamma) := \frac{1}{2} \sigma_t \sigma_t^{\top}(\omega) : \gamma + \sup_{\mathbf{u} \in \mathbf{U}} \left\{ b_t(\omega, \mathbf{u}) \cdot z + \pi_t(\omega) - c_t(\omega, \mathbf{u}) \right\}$$

• For $Y_0 \in \mathbb{R}$, $Z, \Gamma \mathbb{F}^X$ — prog meas, define

$$Y_t^{Z,\Gamma} = Y_0 + \int_0^t Z_s \cdot dX_s - H_s^{\pi}(X, Z_s, 0) ds$$

$$\mathbb{P}_0$$
-a.s. for some $\mathbb{P}_0 \in \mathcal{P}$

(\mathcal{P} dominated set of measures by Girsanov)

Representation problem reduces to

$$Y_{\tau}^{Z,0} = \xi, \quad \mathbb{P}_0 - \text{a.s.} \quad \text{Backward SDE...} \quad \Box$$

• Path-dependent Hamiltonian for the Agent problem :

$$H_t^{\pi}(\omega, z, \gamma) := \frac{1}{2} \sigma_t \sigma_t^{\top}(\omega) : \gamma + \sup_{\mathbf{u} \in U} \left\{ b_t(\omega, \mathbf{u}) \cdot z + \pi_t(\omega) - c_t(\omega, \mathbf{u}) \right\}$$

• For $Y_0 \in \mathbb{R}$, $Z, \Gamma \mathbb{F}^X$ — prog meas, define

$$Y_t^{Z,\Gamma} = Y_0 + \int_0^t Z_s \cdot dX_s - H_s^{\pi}(X, Z_s, 0) ds$$

$$\mathbb{P}_0$$
-a.s. for some $\mathbb{P}_0 \in \mathcal{P}$

 $(\mathcal{P} \text{ dominated set of measures by Girsanov})$

Representation problem reduces to

$$Y_{\tau}^{Z,0} = \xi$$
, $\mathbb{P}_0 - \text{a.s.}$ Backward SDE...

Pardoux & Peng '90, El Karoui, Peng & Quenez '96

• $H_t(\omega, y, z, \gamma)$ non-decreasing and convex in γ , the

$$H_t(\omega, y, z, \gamma) = \sup_{\sigma} \left\{ \frac{1}{2} \sigma^2 : \gamma - H_t^*(\omega, y, z, \sigma) \right\}$$

• Let
$$\hat{\sigma}_t^2 := \frac{d\langle X \rangle}{dt}$$
, and introduce

$$k_t := H_t(Y_t, Z_t, \Gamma_t) - \frac{1}{2}\hat{\sigma}_t^2 : \Gamma_t + H_t^*(Y_t, Z_t, \hat{\sigma}_t) : \ge 0$$
 and " $\inf_{\mathbb{P} \in \mathcal{P}} k_t = 0$ "

Then, required representation $\xi = Y_{\tau}^{Z,\Gamma}$, $\mathcal{P}-q.s.$ is **equivalent to**

$$\xi = Y_0 + \int_0^\tau Z_t \cdot dX_t + H_t^*(Y_t, Z_t, \hat{\sigma}_t) dt - \int_0^\tau k_t dt, \quad \mathcal{P} - q.s.$$

 \Longrightarrow 2BSDE up to approximation of nondecreasing process $K=\int_0^{\cdot}k_tdt$

• $H_t(\omega, y, z, \gamma)$ non-decreasing and convex in γ , the

$$H_t(\omega, y, z, \gamma) = \sup_{\sigma} \left\{ \frac{1}{2} \sigma^2 : \gamma - H_t^*(\omega, y, z, \sigma) \right\}$$

• Let $\hat{\sigma}_t^2 := \frac{d\langle X \rangle}{dt}$, and introduce

$$k_t := H_t(Y_t, Z_t, \Gamma_t) - \frac{1}{2}\hat{\sigma}_t^2 : \Gamma_t + H_t^*(Y_t, Z_t, \hat{\sigma}_t) : \geq 0 \quad \text{and} \quad \inf_{\mathbb{P} \in \mathcal{P}} k_t = 0''$$

Then, required representation $\xi = Y_{\tau}^{Z,\Gamma}$, $\mathcal{P}-q.s.$ is **equivalent to**

$$\xi = Y_0 + \int_0^\tau \frac{\mathbf{Z}_t \cdot dX_t + H_t^*(\mathbf{Y}_t, \mathbf{Z}_t, \hat{\sigma}_t) dt - \int_0^\tau \frac{\mathbf{k}_t dt}{\mathbf{K}_t} dt, \quad \mathcal{P} - q.s.$$

 \Longrightarrow 2BSDE up to approximation of nondecreasing process $K=\int_0^{\cdot}k_tdt$

• $H_t(\omega, y, z, \gamma)$ non-decreasing and convex in γ , the

$$H_t(\omega, y, z, \gamma) = \sup_{\sigma} \left\{ \frac{1}{2} \sigma^2 : \gamma - H_t^*(\omega, y, z, \sigma) \right\}$$

• Let $\hat{\sigma}_t^2 := \frac{d\langle X \rangle}{dt}$, and introduce

$$k_t := H_t(Y_t, Z_t, \Gamma_t) - \frac{1}{2}\hat{\sigma}_t^2 : \Gamma_t + H_t^*(Y_t, Z_t, \hat{\sigma}_t) : \geq 0 \quad \text{and} \quad \inf_{\mathbb{P} \in \mathcal{P}} k_t = 0''$$

Then, required representation $\xi = Y_{\tau}^{Z,\Gamma}$, $\mathcal{P}-q.s.$ is **equivalent to**

$$\xi = Y_0 + \int_0^\tau \frac{\mathbf{Z}_t \cdot dX_t + H_t^*(\mathbf{Y}_t, \mathbf{Z}_t, \hat{\sigma}_t) dt - \int_0^\tau \frac{\mathbf{k}_t dt}{\mathbf{k}_t} dt, \quad \mathcal{P} - q.s.$$

 \Rightarrow 2BSDE up to approximation of nondecreasing process $K = \int_0^\infty k_t dt...$

Wellposedness of random horizon 2ndorder backward SDE

$$\begin{split} Y_{t \wedge \tau} &= \xi + \int_{t \wedge \tau}^{\tau} F_s(Y_s, Z_s, \hat{\sigma}_s) ds - \int_{t \wedge \tau}^{\tau} Z_s \cdot dX_s + \int_{t \wedge \tau}^{\tau} dK_s, \quad \mathcal{P} - \text{q.s.} \\ K \text{ non-decreasing, and } \inf_{\mathbb{P} \in \mathcal{P}} \mathbb{E}^{\mathbb{P}} \left[\int_{s \wedge \tau}^{t \wedge \tau} dK_r \right] = 0, \ s \leq t \end{split}$$

Theorem (Y. Lin, Z. Ren, NT & J. Yang '18)

Assume
$$\exists \rho > -\mu, \ \mathbf{q} > 1 : \mathcal{E}^{L}[|e^{\rho \tau}\xi|^{\mathbf{q}}] + \mathcal{E}^{L}[(\int_{0}^{\tau}|e^{\rho t}f_{t}^{0}|^{2}ds)^{\frac{\mathbf{q}}{2}}] < \infty$$

Then, Random horizon 2BSDE has a unique solution (Y, Z) with

$$Y \in \mathcal{D}_{\eta,\tau}^{p}, \ \ Z \in \mathcal{H}_{\eta,\tau}^{p} \quad \text{for all} \quad \eta \in [-\mu,\rho), \ \ p \in [1,q)$$

$$\|Y\|_{\mathcal{D}^{\boldsymbol{\rho}}_{\eta,\tau}}^{\boldsymbol{\rho}}:=\mathcal{E}^{\boldsymbol{L}}\Big[\sup_{t<\tau}\big|e^{\eta t}Y_{t}\big|^{\boldsymbol{\rho}}\Big],\ \|Z\|_{\mathcal{H}^{\boldsymbol{\rho}}_{\eta,\tau}}^{\boldsymbol{\rho}}:=\mathcal{E}^{\boldsymbol{L}}\Big[\Big(\int_{0}^{\tau}\!\!\big|e^{\eta t}\,\widehat{\sigma}_{t}^{\mathrm{T}}Z_{t}\big|^{2}dt\Big)^{\frac{\boldsymbol{\rho}}{2}}\Big]$$

Extends Soner, NT & Zhang '12 and Possamaï, Tan & Zhou '18 Closely connected to G-BSDE, Hu, Ji, Peng & Song '14

Mean field games

Consider a croud of agents in MFG equilibrium:

$$V_0^{\mathcal{A}}(\underline{\mu},\xi) := \sup_{\mathbb{P} \in \mathcal{P}} J(\underline{\mu},\xi,\mathbb{P}) = J(\underline{\mu},\xi,\hat{\mathbb{P}}_{\xi}^{\underline{\mu}})$$

where
$$J(\mathbb{P},\mu,\xi) := \mathbb{E}^{\mathbb{P}} \Big[\xi(X) - \int_0^{\mathcal{T}} c_t(\mu_t,lpha_t,eta_t) dt \Big]$$

and $\mathbb{P} \in \mathcal{P}$ is weak solution of controlled process :

$$\mathbb{P} \circ (X_0)^{-1} = \mu_0$$
, and $dX_t = \sigma_t(X, \beta_t) [\lambda_t(X, \alpha_t) dt + dW_t^{\mathbb{P}}], \mathbb{P} - a.s.$

Definition (Mean field game equilibrium)

$$\hat{m{\mu}}$$
 is an MFG equilibrium if $\hat{\mathbb{P}}_{m{\xi}}^{\hat{m{\mu}}} \circ (X_t)^{-1} = \hat{m{\mu}}_{m{t}}$, for all $t \leq T$

P.L. Lions' Planning Problem

- uncontrolled diffusion $\sigma_t(\beta) = I_d$
- Markov setting : $\lambda_t(\omega) = \lambda_t(\omega_t)$, c..., and $\xi(\omega) = g(\omega_T)$

Planning Problem

- Let μ_0, ν be given probability measures on \mathbb{R}^d
- Find $g: \mathbb{R}^d \longmapsto \mathbb{R}$ so that

MFG equilibrium $\hat{\mu}$ exists and $\hat{\mu}_0 = \mu_0$, $\hat{\mu}_T = \nu$

Interpretation: optimal transport, regulation

Start from croud distributed as μ_0 . Choose an appropriate incentive cost $g: \mathbb{R}^d \longmapsto \mathbb{R}$ so as to force the MFG equilibrium to the target distribution ν at time T.

 \implies Unique solution exists for any pair $(\mu,\nu)...$ Lions '10, Achdou Y, Camilli F & Capuzzo Dolcetta '12, Porretta

Path-dependent formulation of the Planning Problem

Allow the incentive cost ξ to be path-dependent

Path-dependent Planning Problem

- Let μ_0, ν be given probability measures on \mathbb{R}^d
- Find $\xi: \Omega \longrightarrow \mathbb{R}$, \mathcal{F}_T —measurable, so that

MFG equilibrium
$$\hat{\mu}$$
 exists and $\hat{\mu}_0 = \mu_0$, $\hat{\mu}_T = \nu$

- More freedom for the choice of incentive regulation
- Multiple solutions, in general

MFG equilibria with varying path-dependent cost ξ

Forward description of MFG equilibria

For all controls (Z,Γ) , let $\xi^{Z,\Gamma}:=Y^{Z,\Gamma}_T$, where $Y^{Z,\Gamma}$ is defined by the McKean-Vlasov controlled process

$$dY_t^{Z,\Gamma} = Z_t \cdot dX_t + \frac{1}{2}\Gamma_t : d\langle X \rangle_t - H_t(Y_t^{Z,\Gamma}, Z_t, \Gamma_t, \mu_t)$$

 $\mu_t = \mathbb{P} \circ X_t^{-1}$ distribution of X_t with controls defined as maximizers of H

$$dX_t = \nabla_z H_t(\cdots) dt + \left[2\nabla_\gamma H_t(\cdots)\right]^{1/2} dW_t$$

- Multiple solutions, in general
- Skorohod embedding problem is a particular case :
 - planning exists iff $\mu_0 \leq \nu$ in convex order
 - Many solutions exist... sometimes corresponding to various X COLECTION OF THE PROPERTY OF T optimization criteria!

Optimal Planning Problem

MFG transport plans from μ_0 to ν in $Prob(\mathbb{R}^d)$

- $\Xi(\mu_0, \nu)$: $\xi \in \Lambda^0(\Omega, \mathcal{F}_T)$ s.t. there exists an MFG equilibrium μ satisfying $\hat{\mathbb{P}}^{\mu}_{\varepsilon} \circ (X_T)^{-1} = \nu$
- Given the planner criterion $\phi: \Omega \times \Lambda^0(\Omega, \mathcal{F}_T) \longrightarrow \mathbb{R}$, solve

$$V^{\mathrm{P}} := \sup_{\xi \in \Xi(\mu_{\mathbf{0}}, \nu)} \mathbb{E}^{\hat{\mathbb{P}}^{\mu}_{\xi}} \Big[\phi(X, \xi(X)) \Big]$$

Theorem (Z. Ren, X. Tan & NT)

Planner problem can be restricted to forward MV transport plans

$$V^{\mathrm{P}} = \sup_{Z,\Gamma:\; \hat{\mathbb{P}}^{Z,\Gamma} \circ (X_T)^{-1} = \nu} \mathbb{E}^{\hat{\mathbb{P}}^{Z,\Gamma}} \left[\phi \left(X, Y_T^{Z,\Gamma} \right) \right]$$

BON ANNIVERSAIRE NICOLE

Nonlinear expectation operators

 \mathcal{P}^0 : subset of local martingale measures, i.e.

$$dX_t = \sigma_t dW_t$$
, $\mathbb{P} - \text{a.s. for all}$ $\mathbb{P} \in \mathcal{P}^0$

⇒ Nonlinear expectation

$$\mathcal{E}:=\sup_{\mathbb{P}\in\mathcal{P}^{\mathbf{0}}}\mathbb{E}^{\mathbb{P}}$$

Similarly, $\mathcal{P}^{\mathcal{L}}$: subset of measures \mathbb{Q}^{λ} such that

$$dX_t = \sigma_t(\lambda_t dt + dW_t), \quad \mathbb{Q} - \text{a.s. for some} \quad \lambda, \ \mathbb{F} - \text{adapted}, \ |\lambda| \leq L$$

⇒ Another nonlinear expectation

$$\mathcal{E}^{\mathcal{L}} := \sup_{\mathbb{P} \in \mathcal{P}^{\mathcal{L}}} \mathbb{E}^{\mathbb{Q}}$$

 \mathcal{E} and \mathcal{E}^L will play the role of Sobolev norms...

Nonlinearity

Assumptions on $F: \mathbb{R}_+ \times \omega \times \mathbb{R} \times \mathbb{R}^d \times \mathbb{S}^d_+ \longrightarrow \mathbb{R}$

(C1_L) Lipschitz in $(y, \sigma z)$:

$$|F(.,y,z,\sigma)-F(.,y',z',\sigma)| \leq L(|y-y'|+|\sigma(z-z')|)$$

(C2 $_{\mu}$) Monotone in y:

$$(y-y') \cdot [F(.,y,.) - F(.,y',.)] \le -\mu |y-y'|^2$$

Denote $f_t^0 := F_t(0, 0, \widehat{\sigma}_t)$

Remark Deterministic finite horizon $\tau = T: (C2)_{\mu}$ not needed Soner, NT & Zhang '14 and Possamaï, Tan & Zhou '16

Nonlinearity

Assumptions on $F: \mathbb{R}_+ \times \omega \times \mathbb{R} \times \mathbb{R}^d \times \mathbb{S}^d_+ \longrightarrow \mathbb{R}$

(C1_L) Lipschitz in $(y, \sigma z)$:

$$|F(.,y,z,\sigma)-F(.,y',z',\sigma)| \leq L (|y-y'|+|\sigma(z-z')|)$$

(C2 $_{\mu}$) Monotone in y:

$$(y-y') \cdot [F(.,y,.) - F(.,y',.)] \le -\mu |y-y'|^2$$

Denote $f_t^0 := F_t(0, 0, \widehat{\sigma}_t)$

Remark Deterministic finite horizon $\tau=T$: $(C2)_{\mu}$ not needed Soner, NT & Zhang '14 and Possamaï, Tan & Zhou '16

