# European options in a non-linear incomplete market with default

Miryana Grigorova Marie-Claire Quenez Agnès Sulem

University of Leeds \*LPSM, Paris 7 INRIA, Paris

Conference in honour of Nicole El Karoui

# Market with imperfections

- Market with default .
   Ref : Jeanblanc, Blanchet-Scaillet, Crepey...
- The market is non-linear: the dynamics of the wealth process are non-linear.
  - Ex : funding costs, repo rates, impact of a large investor on the default intensity...
- The market is incomplete

# Market with imperfections

- Market with default .
- Ref : Jeanblanc, Blanchet-Scaillet, Crepey...
- The market is non-linear: the dynamics of the wealth process are non-linear.
  - Ex : funding costs, repo rates, impact of a large investor on the default intensity...
- The market is incomplete
- Our goal : study of the superhedging price of a European option.

## The model

- Let  $(\Omega, \mathcal{G}, \mathcal{P})$  be a complete probability space.
- Let W be a one-dimensional Brownian motion.
- default time : τ random variable

## The model

- Let  $(\Omega, \mathcal{G}, \mathcal{P})$  be a complete probability space.
- Let W be a one-dimensional Brownian motion.
- default time : τ random variable
- Let N be the default jump process :

$$N_t := \mathbf{1}_{\tau \leq t}$$

- Let  $\mathbb{G} = \{ \mathcal{G}_t, t \geq 0 \}$  be the filtration associated with W and N.
- Hyp: W is a G-Brownian motion.
- We have a G-martingale representation theorem w.r.t. W and M (cf. Jeanblanc-Song (2015)).



• **Hyp**: the  $\mathbb{G}$ -predictable compensator of  $N_t$  is :  $\int_0^t \lambda_s ds$ .  $(\lambda_s)$  is called the intensity process, and is supposed to be bounded. It vanishes after  $\tau$ .

- **Hyp**: the  $\mathbb{G}$ -predictable compensator of  $N_t$  is :  $\int_0^t \lambda_s ds$ .  $(\lambda_s)$  is called the intensity process, and is supposed to be bounded. It vanishes after  $\tau$ .
- The compensated martingale of  $(N_t)$  is thus given by

$$\mathbf{M}_t := N_t - \int_0^t \lambda_s ds$$



- **Hyp**: the  $\mathbb{G}$ -predictable compensator of  $N_t$  is :  $\int_0^t \lambda_s ds$ .  $(\lambda_s)$  is called the intensity process, and is supposed to be bounded. It vanishes after  $\tau$ .
- The compensated martingale of  $(N_t)$  is thus given by

$$\mathbf{M}_t := N_t - \int_0^t \lambda_s ds$$

- $\mathbb{H}^2 := \{ \text{ predictable processes } Z \text{ s.t. } \mathbb{E} \left[ \int_0^T Z_t^2 dt \right] < \infty \}$
- $\mathbb{H}^2_{\lambda} := \{ \text{ predictable processes } K \text{ s.t. } \mathbb{E} \Big[ \int_0^T K_t^2 \lambda_t dt \Big] < \infty \}$



## The market

## One risky asset:

$$dS_t = S_{t-}(\mu_t dt + \sigma_t dW_t + \beta_t d\mathbf{M}_t)$$
 with  $S_0 > 0$ .

- $\sigma_t \mu_t$ , and  $\beta_t$  are  $\mathbb{G}$  predictable bounded.
- **Hyp :**  $\sigma_t > 0$  and  $\beta_\tau > -1$ .
- To **simplify** the presentation, suppose  $\sigma_t = 1$ .
  - investor with initial wealth x.  $\mathbf{Z_{t}}=$  amount invested in the risky asset at t (where  $\mathbf{Z_{t}}\in\mathbb{H}^{2}$ ).
  - Let  $V_t^{x,Z}$  the value of the portfolio at time t.

## The market

## One risky asset:

$$dS_t = S_{t-}(\mu_t dt + \sigma_t dW_t + \beta_t d\mathbf{M}_t)$$
 with  $S_0 > 0$ .

- $\sigma_t \mu_t$ , and  $\beta_t$  are  $\mathbb{G}$  predictable bounded.
- **Hyp** :  $\sigma_t > 0$  and  $\beta_{\tau} > -1$ .
- To **simplify** the presentation, suppose  $\sigma_t = 1$ .
  - investor with initial wealth x.  $\mathbf{Z_{t}}$ = amount invested in the risky asset at t (where  $\mathbf{Z_{t}} \in \mathbb{H}^{2}$ ).
  - Let  $V_t^{x,Z}$  the value of the portfolio at time t.
  - In the classical linear case :

$$dV_t = (r_t V_t + \theta_t Z_t) dt + Z_t (dW_t + \beta_t dM_t); \quad V_0 = x,$$

where  $r_t$  = risk-free interest rate, and  $\theta_t := \mu_t - r_t$ .

Here, for  $x \in \mathbb{R}$  and a risky-asset strategy  $\mathbf{Z} \in \mathbb{H}^2$ , the wealth process  $V_t^{x,Z}$  (or simply  $V_t$ ) satisfies :

$$-dV_t = \mathbf{f}(t, V_t, Z_t)dt - Z_t dW_t - Z_t \beta_t dM_t; \quad V_0 = x.$$

where  $\mathbf{f}:(t,\omega,y,z)\mapsto\mathbf{f}(t,\omega,y,z)$  is a **nonlinear** Lipschitz driver (non-convex).



# Examples

recall the dynamics of the wealth  $V^{x,Z}$ :

$$-dV_t = \mathbf{f}(t, V_t, Z_t)dt - Z_t dW_t - Z_t \beta_t dM_t; \quad V_0 = x.$$

- Classical linear case :  $f(t, V_t, Z_t) = -r_t V_t \theta_t Z_t$ , where  $\theta_t = \mu_t r_t$ .
- borrowing rate  $\mathbf{R} \neq$  lending rate  $\mathbf{r}$ :  $f(t, V_t, Z_t) = -r_t V_t \theta_t Z_t + (\mathbf{R_t} \mathbf{r_t})(\mathbf{V_t} \mathbf{Z_t})^-.$
- a repo market on which the risky asset is traded:
   f(t, V<sub>t</sub>, Z<sub>t</sub>) = -r<sub>t</sub>V<sub>t</sub> θ<sub>t</sub>Z<sub>t</sub> I<sub>t</sub>Z<sub>t</sub> + b<sub>t</sub>Z<sub>t</sub> +,
   b<sub>t</sub> = borrowing repo rate,
   I<sub>t</sub> = lending repo rate.
   (cf. Brigo, Rutkowski ...).
- large seller whose strategy impacts the default intensity (cf. Dum.-Grig.-Q.-Sul. (2018))

# Pricing in a complete non-linear market

(Ref : El Karoui-P-Q 97) Brownian filtration : suppose  $\mathcal{F} := \mathcal{F}^{W}$ .

$$dS_t = S_t(\mu_t dt + dW_t)$$

Consider a European option with maturity T and payoff  $\xi \in L^2(\mathcal{F}_T)$ .  $\exists ! (X, Z) \text{ in } \mathbb{H}^2 \times \mathbb{H}^2$  /

$$-dX_t = f(t, X_t, Z_t)dt - Z_t dW_t; \quad X_T = \xi.$$

$$\rightarrow X = V^{X_0,Z}$$

# Pricing in a complete non-linear market

(Ref : El Karoui-P-Q 97) Brownian filtration : suppose  $\mathcal{F} := \mathcal{F}^{W}$ .

$$dS_t = S_t(\mu_t dt + dW_t)$$

Consider a European option with maturity T and payoff  $\xi \in L^2(\mathcal{F}_T)$ .  $\exists ! (X, Z) \text{ in } \mathbb{H}^2 \times \mathbb{H}^2$  /

$$-dX_t = f(t, X_t, Z_t)dt - Z_t dW_t; \quad X_T = \xi.$$

 $\to X = V^{X_0,Z} \to X_0 = X_0(T,\xi)$  is the hedging price(for the seller).

This leads to a *f*-nonlinear pricing system, introduced in El Karoui-Que. 96 :  $(T,\xi)\mapsto X^f(T,\xi)$  satisfying the **monotonicity** property, **consistency** property  $\xi$ , the **No-Arbitrage** property....

later called f-expectation (by S.Peng) and denoted by  $\mathscr{E}^f$ :  $\forall \xi \in L^2(\mathcal{F}_T)$ 

$$\mathscr{E}_{s,T}^{f}(\xi) := X_{s}(T,\xi), s \in [0,T].$$

Here, our nonlinear market is **incomplete**. Indeed, let  $\xi \in L^2(\mathcal{G}_T)$ . It might not be possible to find (x, Z) in  $\mathbb{R} \times \mathbb{H}^2$  such that

$$V_T^{x,Z}=\xi.$$

Here, our nonlinear market is **incomplete**.

Indeed, let  $\xi \in L^2(\mathcal{G}_T)$ . It might not be possible to find (x,Z) in  $\mathbb{R} \times \mathbb{H}^2$  such that

$$V_T^{x,Z}=\xi.$$

In other words, there does not necessarily exist  $(V,Z) \in \mathbb{H}^2 imes \mathbb{H}^2$ /

$$-dV_t = f(t, V_t, Z_t)dt - Z_t dW_t - Z_t \beta_t dM_t; \quad V_T = \xi,$$

Here, our nonlinear market is **incomplete**.

Indeed, let  $\xi \in L^2(\mathcal{G}_T)$ . It might not be possible to find (x, Z) in  $\mathbb{R} \times \mathbb{H}^2$  such that

$$V_T^{x,Z}=\xi.$$

In other words, there does not necessarily exist  $(V,Z) \in \mathbb{H}^2 \times \mathbb{H}^2$ /

$$-dV_t = f(t, V_t, Z_t)dt - Z_t dW_t - Z_t \beta_t dM_t; \quad V_T = \xi,$$

However, by the  $\mathbb{G}$ -martingale representation w.r.t.  $W, M, \exists ! (Y, Z, \mathbf{K})$  in  $\mathbb{H}^2 \times \mathbb{H}^2 \times \mathbb{H}^2$  solution of the BSDE with default (cf. G-Q-S 2017 for details)

$$-dY_t = f(t, Y_t, Z_t)dt - Z_t dW_t - \mathbf{K_t} dM_t; \quad Y_T = \xi.$$



Here, our nonlinear market is incomplete.

Indeed, let  $\xi \in L^2(\mathcal{G}_T)$ . It might not be possible to find (x,Z) in  $\mathbb{R} \times \mathbb{H}^2$  such that

$$V_T^{x,Z}=\xi.$$

In other words, there does not necessarily exist  $(V,Z) \in \mathbb{H}^2 imes \mathbb{H}^2$ /

$$-dV_t = f(t, V_t, Z_t)dt - Z_t dW_t - Z_t \beta_t dM_t; \quad V_T = \xi,$$

However, by the  $\mathbb{G}$ -martingale representation w.r.t.  $W, M, \exists ! (Y, Z, \mathbf{K})$  in  $\mathbb{H}^2 \times \mathbb{H}^2 \times \mathbb{H}^2$  solution of the BSDE with default (cf. G-Q-S 2017 for details)

$$-dY_t = f(t, Y_t, Z_t)dt - Z_t dW_t - \mathbf{K_t} dM_t; \quad Y_T = \xi.$$

In general,  $\mathbf{K} \neq Z\beta$ .



Notation : if (Y, Z, K) is the solution of the  $\mathbb{G}$ -BSDE

$$-dY_t = f(t, Y_t, Z_t)dt - Z_t dW_t - K_t dM_t; \quad Y_T = \xi,$$

we set  $\mathscr{E}_{s,T}^f(\xi) := Y_s$  for all  $s \in [0,T]$ , called f-evaluation of  $\xi$  under P (with respect to  $\mathcal{G}$ ).

Note that it might be a possible price but it does not allow the seller to be hedged.

## **Definition**

seller's superhedging price at time 0 :

$$v_0 := \inf\{x \in \mathbb{R} : \exists Z \in \mathbb{H}^2 \text{ with } V_T^{x,Z} \ge \xi \text{ a.s.}\}.$$

Dual representation formula for this price?



# The classical linear (incomplete) case

- In this case,  $f(t, y, z) := -r_t y \theta_t z$ .
- **Definition**: Let  $R \sim P$ . R is called a martingale probability measure if  $\forall x \in \mathbb{R}, \forall Z \in \mathbb{H}^2$ , the process  $(e^{-\int_0^t r_s ds} V_t^{x,Z})$  is an R-martingale (where  $V^{x,Z}$  follows the linear dynamics with driver  $f(t,y,z) := -r_t y - \theta_t z$ ).
- Dual representation of the seller's superhedging price (ref : EL Karoui-Qu.(91-95)) :

$$v_0 = \sup_{R \in \mathscr{P}} E_R(e^{-\int_0^T r_s ds} \xi),$$

where  $\mathscr{P} := \{ \text{ martingale probability measures} \}.$ 



Up to discounting, suppose that r = 0. We had first shown:

**Theorem**: (ref : EL Karoui-Qu.(91-95)), Föllmer...) : Let  $(Y_t)$  be an RCLL adapted process. If  $(Y_t)$  is an R-supermartingale  $\forall \mathbf{R} \in \mathscr{P}$ , then,  $\exists \mathbf{Z} \in \mathbb{H}^2$ , and a nondecreasing optional RCLL process

 $\mathbf{h}$ , with  $\mathbf{h}_0 = 0$  such that

$$Y_t = V_t^{Y_0,Z} - h_t \quad 0 \le t \le T.$$

Up to discounting, suppose that r = 0. We had first shown:

Theorem: (ref: EL Karoui-Qu.(91-95)), Föllmer...):

Let  $(Y_t)$  be an RCLL adapted process. If  $(Y_t)$  is an R-supermartingale  $\forall \mathbf{R} \in \mathscr{P}$ , then,  $\exists \ Z \in \mathbb{H}^2$ , and a nondecreasing optional RCLL process  $\mathbf{h}$ , with  $\mathbf{h}_0 = 0$  such that

$$Y_t = V_t^{Y_0,Z} - h_t \quad 0 \le t \le T.$$

proof of the dual representation : let  $X_S := ess \sup_{R \in \mathscr{P}} E_R(\xi | \mathscr{F}_S)$ . By the above theorem, we show  $X_t = V_t^{X_0, Z} - h_t, \, \forall t \in [0, T]$ . Hence,

$$X_T=\xi=V_T^{X_0,Z}-h_T \ \Rightarrow V_T^{X_0,Z}\geq \xi \ \Rightarrow X_0\geq v_0\ ...\ X_0=v_0.$$
 QED

Up to discounting, suppose that r = 0. We had first shown:

**Theorem**: (ref: EL Karoui-Qu.(91-95)), Föllmer...):

Let  $(Y_t)$  be an RCLL adapted process. If  $(Y_t)$  is an R-supermartingale  $\forall \mathbf{R} \in \mathscr{P}$ , then,  $\exists \ Z \in \mathbb{H}^2$ , and a nondecreasing optional RCLL process  $\mathbf{h}$ , with  $\mathbf{h}_0 = 0$  such that

$$Y_t = V_t^{Y_0,Z} - h_t \quad 0 \le t \le T.$$

proof of the dual representation : let  $X_S := ess \sup_{R \in \mathscr{P}} E_R(\xi | \mathscr{F}_S)$ . By the above theorem, we show  $X_t = V_t^{X_0, Z} - h_t, \, \forall t \in [0, T]$ . Hence,

$$X_T = \xi = V_T^{X_0,Z} - h_T \ \Rightarrow V_T^{X_0,Z} \ge \xi \ \Rightarrow X_0 \ge \nu_0 \ ... \ X_0 = \nu_0.$$
 QED

Remark :  $\forall R \in \mathscr{P}, E_R(\xi) = X_0 - E_R(h_T).$ 

Hence  $\inf_{B \in P} E_B(h_T) = 0$ 



Up to discounting, suppose that r = 0. We had first shown:

**Theorem**: (ref: EL Karoui-Qu.(91-95)), Föllmer...):

Let  $(Y_t)$  be an RCLL adapted process. If  $(Y_t)$  is an R-supermartingale  $\forall \mathbf{R} \in \mathscr{P}$ , then,  $\exists \ Z \in \mathbb{H}^2$ , and a nondecreasing optional RCLL process  $\mathbf{h}$ , with  $\mathbf{h}_0 = 0$  such that

$$Y_t = V_t^{Y_0,Z} - h_t \quad 0 \le t \le T.$$

proof of the dual representation : let  $X_S := ess \sup_{R \in \mathscr{P}} E_R(\xi | \mathscr{F}_S)$ . By the above theorem, we show  $X_t = V_t^{X_0, Z} - h_t$ ,  $\forall t \in [0, T]$ . Hence,

$$X_T=\xi=V_T^{X_0,Z}-h_T \ \Rightarrow V_T^{X_0,Z}\geq \xi \ \Rightarrow X_0\geq v_0\ ...\ X_0=v_0.$$
 QED

Remark :  $\forall R \in \mathscr{P}$ ,  $E_R(\xi) = X_0 - E_R(h_T)$ .

Hence  $\inf_{R \in P} E_R(h_T) = 0$  ( $h_T$  is the cumulated profit for the seller).

Similarly,  $\forall S \leq T$ ,  $X_S = ess \sup_{R \in \mathscr{P}} E_R(\xi \mid \mathcal{G}_S)$  is equal to the superhedging price at time S. As seen above,

$$X_t = V_t^{X_0, Z} - h_t, \forall t \le T.$$
 (2.1)

 $\Rightarrow$  the profit process (for the seller) ( $h_t$ ) satisfies the **minimality** cn. :

ess 
$$\inf_{\mathbf{R} \in \mathscr{P}} E_R[h_T - h_S \mid \mathcal{G}_S] = 0 \quad \forall S \le T.$$
 (2.2)

Actually, we also have shown:

#### **Theorem**

Let *X* be any process with  $X_T = \xi$  such that  $\exists (Z, h)/$ 

$$X_t = V_t^{X_0, Z} - h_t, \forall t \le T.$$
 (2.3)

We have the equivalence property:

X = superhedging price process  $\Leftrightarrow$  the process  $(\mathbf{h_t})$  satisfies (2.2).

- Question: what is the analogous of martingale probability measures in the case when f is non-linear?
- First, we define the non-linear f-evaluation under Q.

# Definition of $W^Q$ and $M^Q$ for $\mathbf{Q} \sim P$

From the  $\mathbb{G}$ -martingale representation theorem, its density process  $(\zeta_t)$  satisfies

$$d\zeta_t = \zeta_{t^-}(\alpha_t dW_t + v_t dM_t); \zeta_0 = 1,$$

where  $(\alpha_t)$  and  $(\nu_t)$  are  $\mathbb{G}$ -predictable processes with  $\nu_{\tau \wedge T} > -1$  a.s. By Girsanov's theorem,

- $\mathbf{W}^{\mathbf{Q}}_{t} := W_{t} \int_{0}^{t} \alpha_{s} ds$  is a *Q*-Brownian motion, and
- $\mathbf{M}^{\mathbf{Q}}_{t} := M_{t} \int_{0}^{t} v_{s} \lambda_{s} ds$  is a *Q*-martingale.

# Definition of $W^Q$ and $M^Q$ for $\mathbf{Q} \sim P$

From the  $\mathbb{G}$ -martingale representation theorem, its density process  $(\zeta_t)$  satisfies

$$d\zeta_t = \zeta_{t^-}(\alpha_t dW_t + v_t dM_t); \zeta_0 = 1,$$

where  $(\alpha_t)$  and  $(\nu_t)$  are  $\mathbb{G}$ -predictable processes with  $\nu_{\tau \wedge T} > -1$  a.s. By Girsanov's theorem,

- $\mathbf{W}^{\mathbf{Q}}_{t} := W_{t} \int_{0}^{t} \alpha_{s} ds$  is a *Q*-Brownian motion, and
- $\mathbf{M}^{\mathbf{Q}}_{t} := M_{t} \int_{0}^{t} v_{s} \lambda_{s} ds$  is a *Q*-martingale.

We have a Q-martingale representation for Q-martingales w.r.t.  $W^Q$  and  $M^Q$ .

## f-evaluation under Q

Let  $Q \sim P$ .

We call *f*-evaluation under Q, denoted by  $\mathscr{E}_{Q}^{t}$ , the operator defined by : for  $\xi \in L_{Q}^{2}(\mathcal{G}_{T})$ ,

$$\mathscr{E}_{\mathbf{Q},\mathbf{s},T}^{f}(\xi) := X_{s}, \qquad s \in [0,T]$$

where  $(X,Z,K)\in \mathbb{H}_Q^2 imes \mathbb{H}_Q^2 imes \mathbb{H}_{Q,\lambda}^2$  satisfies the  $Q ext{-BSDE}$ 

$$-dX_t = f(t, X_t, Z_t)dt - Z_t d\mathbf{W_t^Q} - K_t d\mathbf{M_t^Q}; \quad X_T = \xi.$$

Note that  $\mathscr{E}_{\mathbf{p}}^{f} = \mathscr{E}^{f}$ .

Non-linear expectation :  $\mathscr{E}_{Q,t,T}^{f}(\xi) := X_{t}$ , where (X,Z,K) satisfies :

$$-dX_t = f(t, X_t, Z_t)dt - Z_t d\mathbf{W_t^Q} - K_t d\mathbf{M_t^Q}; \quad X_T = \xi.$$

### **Definition**

Let  $Y \in S_Q^2$ . The process  $(Y_t)$  is said to be a (strong)  $\mathscr{E}_Q^t$ -martingale (or (f,Q)-martingale), if  $\forall \sigma, \tau \in \mathscr{T}$  with  $\sigma \leq \tau$ ,

$$\mathscr{E}_{Q,\sigma,\tau}^{f}(Y_{\tau}) = Y_{\sigma}$$
 a.s..

Non-linear expectation :  $\mathscr{E}_{Q,t,T}^{f}(\xi) := X_{t}$ , where (X,Z,K) satisfies :

$$-dX_t = f(t, X_t, Z_t)dt - Z_t d\mathbf{W_t^Q} - K_t d\mathbf{M_t^Q}; \quad X_T = \xi.$$

### **Definition**

Let  $Y \in S_Q^2$ . The process  $(Y_t)$  is said to be a (strong)  $\mathscr{E}_Q^t$ -martingale (or (f,Q)-martingale), if  $\forall \sigma, \tau \in \mathscr{T}$  with  $\sigma \leq \tau$ ,

$$\mathscr{E}_{\mathbf{Q},\sigma,\tau}^{f}(Y_{\tau})=Y_{\sigma}$$
 a.s..

Question: what is the analogous of martingale probability measures in the non-linear case?

#### **Definition**

A probability  $Q \sim P$  is called an f-martingale probability measure if :  $\forall \ x \in \mathbb{R}$  and  $\forall \ Z \in \mathbb{H}_Q^2$ , the wealth  $V^{x,Z}$  is a (f,Q)-martingale.

We denote by  $\mathcal{Q} := \{ f \text{-martingale probabilities } \}$ 

### **Definition**

A probability  $Q \sim P$  is called an f-martingale probability measure if :  $\forall x \in \mathbb{R}$  and  $\forall Z \in \mathbb{H}_Q^2$ , the wealth  $V^{x,Z}$  is a (f,Q)-martingale.

We denote by  $\mathcal{Q} := \{ f$ -martingale probabilities  $\}$ Remarks :

- $\bullet$   $P \in \mathcal{Q}$ .
- $Q \in \mathcal{Q} \Leftrightarrow W + \int \beta_s dM_s$  is a Q-martingale.
- $\rightarrow$  The set  $\mathscr{Q}$  does not depend on f.
- $\mathcal{Q}$  is equipotent to  $\mathcal{P}$  (via a "translation" of  $\theta$ )

# Dual representation of the seller's price

Using the (f, Q)-martingale property of the wealths for  $\mathbf{Q} \in \mathcal{Q}$ , we easily show :

$$v_0 \geq \sup_{\mathbf{Q} \in \mathscr{Q}} \mathscr{E}_{\mathbf{Q},0,T}^{f}(\xi) = X(0),$$

where for each  $S \in \mathcal{T}$ ,

$$X(S) := ess \sup_{\mathbf{Q} \in \mathscr{Q}} \mathscr{E}_{\mathbf{Q},S,T}^f(\xi).$$

**Assumption**:  $E_{\mathbf{Q}}[ess \sup_{S \in \mathcal{T}} X(S)^2] < +\infty \ \forall \mathbf{Q} \in \mathcal{Q} \quad (\Leftrightarrow v_0 < \infty).$ 

### **Theorem**

$$v_0 = \sup_{\mathbf{Q} \in \mathscr{Q}} \mathscr{E}^{^f}_{\mathbf{Q},0,T}(\xi).$$

# Dual representation of the seller's price

Using the (f, Q)-martingale property of the wealths for  $\mathbf{Q} \in \mathcal{Q}$ , we easily show :

$$v_0 \geq \sup_{\mathbf{Q} \in \mathscr{Q}} \mathscr{E}_{\mathbf{Q},0,T}^{f}(\xi) = X(0),$$

where for each  $S \in \mathcal{T}$ ,

$$X(S) := ess \sup_{\mathbf{Q} \in \mathscr{Q}} \mathscr{E}_{\mathbf{Q},S,T}^f(\xi).$$

**Assumption**:  $E_{\mathbf{Q}}[ess \sup_{S \in \mathcal{T}} X(S)^2] < +\infty \ \forall \mathbf{Q} \in \mathcal{Q} \quad (\Leftrightarrow v_0 < \infty).$ 

### **Theorem**

$$v_0 = \sup_{\mathbf{Q} \in \mathscr{Q}} \mathscr{E}^{^f}_{\mathbf{Q},0,T}(\xi).$$

**Remark :** The supremum is attained if and only if the option is replicable.

# $\mathcal{E}^{f}$ -optional decomposition

We first show:

#### Theorem:

Let 
$$(Y_t) \in S_Q^2 \ \forall \ Q \in \mathscr{Q}$$
.

If  $(Y_t)$  is a strong  $\mathscr{E}_{\mathbf{Q}}^{f}$ -supermartingale  $\forall \ \mathbf{Q} \in \mathscr{Q}$ ,

# $\mathcal{E}^{t}$ -optional decomposition

We first show:

#### Theorem:

Let 
$$(Y_t) \in S_Q^2 \ \forall \ Q \in \mathscr{Q}$$
.

If  $(Y_t)$  is a strong  $\mathscr{E}_{\mathbf{Q}}^t$ -supermartingale  $\forall \ \mathbf{Q} \in \mathscr{Q}$ , then, there exists  $Z \in \mathbb{H}^2$ , and a nondecreasing optional RCLL process **h**, with  $\mathbf{h}_0 = 0$  /

$$Y_t = Y_0 - \int_0^t f(s, Y_s, Z_s) dt + \int_0^t Z_s(dW_s + \beta_s dM_s) - \mathbf{h}_t, \quad 0 \le t \le T.$$

This decomposition is unique.

## Sketch of the proof of the dual representation :

 $\exists (X_t) \in S^2 / \text{ for all } S$ ,

$$X_S = ess \sup_{\mathbf{Q} \in \mathscr{Q}} \mathscr{E}_{\mathbf{Q},S,T}^{f}(\xi)$$
 a.s.

- It is an  $\mathscr{E}_{\mathbf{Q}}^{^{f}}$ -supermartingale for each  $\mathbf{Q}\in\mathscr{Q}$  (with  $X(T)=\xi$ ).
- By the optional  $\mathscr{E}^{t}$ -decomposition theorem,  $\exists Z, h... /$

$$X_t = X_0 - \int_0^t f(s, X_s, Z_s) dt + \int_0^t Z_s(dW_s + \beta_s dM_s) - \mathbf{h}_t, \quad 0 \le t \le T.$$

By the comparison theorem for forward SDEs,

$$(\xi =) X_T \leq V_T^{X_0,Z}$$

Hence,  $X_0 \ge v_0$ . Since  $X_0 \le v_0$ , we get  $X_0 = v_0$ . **QED** 

**Hyp.** : 
$$\sup_{\mathbf{Q} \in \mathscr{Q}} E_{Q}[\xi^{2}] < +\infty$$
.

We have seen that the superhedging price process *X* satisfies:

$$X_t = X_0 - \int_0^t f(s, X_s, Z_s) dt + \int_0^t Z_s (dW_s + \beta_s dM_s) - \mathbf{h}_t = \mathbf{V_t^{X_0, \mathbf{Z}, \mathbf{h}}}$$

## Proposition

The seller's cumulated profit  $h_T$  satisfies :  $\inf_{\mathbf{Q} \in \mathscr{Q}} E_Q(\mathbf{h}_T) = 0$ 

**Hyp.** :  $\sup_{\mathbf{Q} \in \mathscr{Q}} E_Q[\xi^2] < +\infty$ .

We have seen that the superhedging price process X satisfies:

$$X_t = X_0 - \int_0^t f(s, X_s, Z_s) dt + \int_0^t Z_s (dW_s + \beta_s dM_s) - \mathbf{h}_t = \mathbf{V_t^{X_0, \mathbf{Z}, \mathbf{h}}}.$$

## **Proposition**

The seller's cumulated profit  $h_T$  satisfies :  $\inf_{\mathbf{Q} \in \mathscr{Q}} E_Q(\mathbf{h}_T) = 0$ 

It can also be shown that

$$\operatorname{ess\,inf}_{\mathbf{Q}\in\mathscr{Q}} E_{Q}[h_{T} - h_{S} \mid \mathcal{G}_{S}] = 0 \quad \forall S \leq T. \tag{3.1}$$

### **Theorem**

Let X be any process with  $X_T = \xi$ , such that  $\exists (Z, h) / X = V^{X_0, Z, h}$ . Then,

 $X = \text{superhedging price process} \Leftrightarrow \text{the process } (h_t) \text{ satisfies (3.1)}.$ 

# Characterization of the superhedging price process via a constrained BSDE (with default)

**Theorem**: The seller's superhedging price process  $(X_t)$  is the (minimal) supersolution of the constrained BSDE with default:  $\exists (Z,K) \in \mathbb{H}^2 \times \mathbb{H}^2_{\lambda}$  and **A predictable** nondecreasing such that

$$-dX_t = f(t, X_t, Z_t)dt - Z_t dW_t - K_t dM_t + d\mathbf{A}_t; \quad X_T = \xi;$$

$$\mathbf{A}_{\cdot} + \int_0^{\cdot \cdot} (K_s - \beta_s Z_s) \lambda_s ds \quad \text{is nondecreasing}$$

$$(K_t - \beta_t Z_t) \lambda_t \leq 0, \ dP \otimes dt - \text{a.e.};$$

# Characterization of the superhedging price process via a constrained BSDE (with default)

**Theorem**: The seller's superhedging price process  $(X_t)$  is the (minimal) supersolution of the constrained BSDE with default:  $\exists (Z,K) \in \mathbb{H}^2 \times \mathbb{H}^2_{\lambda}$  and **A predictable** nondecreasing such that

$$-dX_t = f(t, X_t, Z_t)dt - Z_t dW_t - K_t dM_t + d\mathbf{A}_t; \quad X_T = \xi;$$

$$\mathbf{A}. + \int_0^{\cdot} (K_s - \beta_s Z_s) \lambda_s ds \quad \text{is nondecreasing}$$

$$(K_t - \beta_t Z_t) \lambda_t \leq 0, \ dP \otimes dt - \text{a.e.};$$

Remark :  $\mathbf{h}_t = \mathbf{A}_t - \int_0^t (K_s - \beta_s Z_s) dM_s$ .





Dumitrescu D., Grigorova M., Quenez M.-C. and A. Sulem: BSDE with default jump, (2019), Computation and Combinatorics in Dynamics, Stochastics and Control - The Abel Symposium 2016, 13, Springer.