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OUTLINE

We provide a probabilistic interpretation, based on stochastic calculus,
for the variational characterization of diffusion as entropic gradient
flux. This was first established, through a discretization scheme, in the
seminal paper by Jordan, Kinderlehrer and Otto (1998). 1

It was shown by those authors that, for diffusions of the Langevin-
Smoluchowski type

dX (t) = −∇Ψ
(
X (t)

)
dt + dW (t) ,

the associated Fokker-Planck probability density flow minimizes the rate
of relative entropy dissipation – as measured by the distance traveled in
the ambient space of probability measures with finite second moments,

as measured by the quadratic Wasserstein metric on that space.

1 It was then extended to more general settings via a set of tools that
became known colloquially as “Otto Calculus”.



We obtain novel, stochastic-process versions of these features, valid along
almost every trajectory of the diffusive motion in both the forward and,
most transparently, the backward (as in Fontbona-Jourdain 2016),
directions of time, using a very direct perturbation analysis.

By averaging our trajectorial results with respect to the underlying mea-
sure on path space, we establish the minimum rate of entropy dissipation
along the Fokker-Planck flow – and measure precisely the deviation from
this minimum that corresponds to any given perturbation. 2

As a bonus of this perturbation analysis, the so-called HWI inequality

relating relative entropy (H), Wasserstein distance (W) and relative

Fisher information (I), literally falls in our lap. 3

2 Our approach can be described pithily as “carrying out and extending
Otto calculus by means of Itô’s calculus”.

3 And with it the Talagrand, log-Sobolev and Poincaré inequalities.



THE SETTING

Start with a “smooth potential well” Ψ : Rn → [0,∞).
Think quadratic,

Ψ(x) = |x |2 ;

but our conditions will allow “double well” potentials of the sort
Ψ(x) =

(
x2 − a2

)2
, or even

Ψ(x) ≡ 0.

We place Brownian particles in such a potential well. They
diffuse, but also “slide along the edges of the well”, according
to the Langevin-Smoluchowski equation

dX (t) = −∇Ψ
(
X (t)

)
dt + dW (t) .



Because of the sliding towards the bottom of the well, this motion
is “conservative”: has an invariant distribution Q on B(Rn)
(the so-called “Gibbs measure”), with density

q(x) := e−2Ψ(x)

relative to Lebesgue measure.

No need to assume that this Q is finite
(so it can be normalized to a probability):
It is just a σ−finite measure.



We posit now an initial distribution P(0) of particles with density
p0(·) that admits finite second moment:

∫
Rn |x |2p0(x)dx <∞.

. Under the coercivity condition〈
x ,∇Ψ(x)

〉
Rn ≥ −c |x |2 , ∀ |x | > R ,

for suitable positive real constants c, R, such finiteness propagates:

. With P(t) the distribution of particles at time t ∈ [0,∞), the
corresponding density p(t, ·) also admits a finite second moment:∫
Rn |x |2p(t, x)dx <∞.

This probability density function satisfies the Fokker-Planck
(or forward Kolmorogov) equation

∂tp(t, x) =
1

2
∆p(t, x) + div

(
∇Ψ(x) p(t, x)

)
.



WASSERSTEIN DISTANCE

The coercivity condition ensures that the resulting flow of
probability measures(

P(t)
)

0≤t<∞ , P(t,A) =

∫
A
p(t, x) dx

is a curve in
P2(Rn) ,

the so-called quadratic Wasserstein space of probability measures
with finite second moment and endowed with the familiar distance

W (µ, ν) :=

(
inf
Y∼µ
Z∼ν

E
∣∣Y − Z

∣∣2 )1/2

.

This P2(Rn) is the ambient space, where the configuration of our
system will live.



RELATIVE ENTROPY

For every probability measure P ∈ P2(Rn) in this quadratic
Wasserstein space, it is possible to define the relative entropy
with respect to the invariant measure Q, as

H(P|Q) :=

∫
Rn

log

(
dP

dQ

)
dP ∈ (−∞,∞]

if P � Q; and as H(P|Q) :=∞ otherwise. We are relying here on

the construction of Ch. Léonard.

IF this invariant measure Q is a probability, then the relative
entropy right above is a non-negative quantity.



ENERGY AND ENTROPY

For a probability density function ρ : Rn → [0,∞), let us introduce
the potential energy and the Gibbs-Boltzmann entropy

E (ρ) :=

∫
Rn

Ψ(x) ρ(x) dx , S(ρ) :=

∫
Rn

ρ(x) log ρ(x) dx ,

respectively, as well as the “free energy” (sum of potential and
internal energies)

F (ρ) := E (ρ) +
1

2
S(ρ) .

We shall assume that our initial configuration of particles has finite
free energy:

F
(
p0(·)

)
<∞ .



. Then this free energy decreases along the flow of probability
density functions

(
pt(·)

)
0≤t<∞ , or equivalently along the flow

of the corresponding probability measures(
P(t)

)
0≤t<∞ ⊂ P2(Rn) .

. And is a constant multiple of the relative entropy with respect to
the invariant distribution: to wit, the function

t 7−→ 2F
(
pt(·)

)
= H

(
P(t)

∣∣Q) ∈ R decreases

in accordance with the second law of thermodynamics
(more about this decrease, and its temporal and ambient
rates, in a moment).



PROBABILISTIC SETTING AND NOTATION

Let us denote by P the probability measure induced by the
diffusion X (·) governed by the equation

dX (t) = −∇Ψ
(
X (t)

)
dt + dW (t)

on the space C ([0,∞);Rn) of continuous functions.

We introduce the likelihood ratio function

`(t, x) :=
p(t, x)

q(x)
= p(t, x) e 2 Ψ(x) , x ∈ Rn

and the likelihood ratio process

`
(
t,X (t)

)
=

dP(t)

dQ

(
X (t)

)
, 0 ≤ t <∞ .



Then, we have the representation of the relative entropy

H
(
P(t)

∣∣Q) = EP[ log `
(
t,X (t)

) ]
=

∫
Rn

(
log p(t, x) + 2Ψ(x)

))
p(t, x) dx ,

and the definition of the Fisher information

I
(
P(t)

∣∣Q) := EP[ ∣∣∇ log `
(
t,X (t)

)∣∣2 ]
=

∫
Rn

∣∣∣∇( log p(t, x) + 2Ψ(x)
)∣∣∣2p(t, x) dx .



BASIC IDENTITIES

We have the (HI, or de Bruijn), (WI) and (HWI) identities

lim
t↓t0

H
(
P(t)

∣∣Q)− H
(
P(t0)

∣∣Q)
t − t0

= − 1

2
I
(
P(t)

∣∣Q)
lim
t↓t0

W
(
P(t),P(t0)

)
t − t0

=
1

2

√
I
(
P(t)

∣∣Q)

lim
t↓t0

H
(
P(t)

∣∣Q)− H
(
P(t0)

∣∣Q)
W
(
P(t),P(t0)

) = −
√

I
(
P(t)

∣∣Q) .
. The (negative) quantity in this last identity, measures the rate of
decrease (“descent”) of relative entropy along the curve

(
P(t)

)
0≤t<∞

in terms of the distance traveled in the ambient Wasserstein space
P2(Rn) .

. We shall see also that this descent is the “steepest possible”, in a sense

we’ll make very precise presently.



PERTURBATION ANALYSIS

Keep the same dynamics for the diffusive particles, on [0, t0];
but from that time onward, perturb the drift by the gradient

β = ∇B

of a smooth, compactly supported potential:

dX (t) = −
[
∇Ψ

(
X (t)

)
+∇B

(
X (t)

)]
dt + dW β(t) , t > t0 .

Denote by Pβ the probability measure induced in this manner on
the space C ([0,∞);Rn) of continuous functions, under which
W β is Brownian motion.

And denote by Pβ(t) the Pβ−distribution of the variable X (t);
clearly, Pβ(t0) ≡ P(t0).



We introduce the random vectors

a := ∇ log `
(
t0,X (t0)

)
, b := β

(
X (t0)

)
.

in L2(P), and denote by〈〈
a, b

〉〉
L2(P)

,
∥∥ a∥∥

L2(P)

inner product and norm, respectively, in this space L2(P).



BASIC IDENTITIES: THE PERTURBED CASE

Then we have the “perturbed” versions of the (HI), (WI) and
(HWI) identities

lim
t↓t0

H
(
Pβ(t)

∣∣Q)− H
(
Pβ(t0)

∣∣Q)
t − t0

= − 1

2

〈〈
a, a + 2b

〉〉
L2(P)

lim
t↓t0

W
(
Pβ(t),Pβ(t0)

)
t − t0

=
1

2

∥∥ a + 2b
∥∥
L2(P)

lim
t↓t0

H
(
Pβ(t)

∣∣Q)− H
(
Pβ(t0)

∣∣Q)
W
(
Pβ(t),Pβ(t0)

) = −

〈〈
a ,

a + 2b∣∣a + 2b
∣∣
〉〉

L2(P)

.

We recall here from the previous slide the random vectors

a := ∇ log `
(
t0,X (t0)

)
, b := β

(
X (t0)

)
.



Now compare this last “perturbed” slope

Sβ(t0) := lim
t↓t0

H
(
Pβ(t)

∣∣Q)− H
(
Pβ(t0)

∣∣Q)
W
(
Pβ(t),Pβ(t0)

)
= −

〈〈
a ,

a + 2b∣∣a + 2b
∣∣
〉〉

L2(P)

with the “unperturbed” slope

S(t0) := lim
t↓t0

H
(
P(t)

∣∣Q)− H
(
P(t0)

∣∣Q)
W
(
P(t),P(t0)

) = −
∥∥ a∥∥

L2(P)

from a few slides upstream.



Their difference in non-negative

Sβ(t0)− S(t0) =
∥∥ a∥∥

L2(P)
−

〈〈
a ,

a + 2b∣∣a + 2b
∣∣
〉〉

L2(P)

≥ 0 ,

in fact strictly positive unless the random vectors
a = ∇ log `

(
t0,X (t0)

)
, b = β

(
X (t0)

)
are collinear.

. The (negative) slope along the original, unperturbed
Fokker-Planck flow

(
P(t)

)
t≥0

, namely

S(t0) := lim
t↓t0

H
(
P(t)

∣∣Q)− H
(
P(t0)

∣∣Q)
W
(
P(t),P(t0)

) = −
∥∥ a∥∥

L2(P)
,

is the slope of steepest descent among all such perturbations.
This is the “entropic gradient flux” property of the title.



THE JOYS OF PROBABILITY

How do we get to all this? The short answer is,

“ Well, we let the trajectories do all the work for us;
then we just go in, and take expectations.”

Or, as Nicole El Karoui used to say to me, when we were working
together:

“Elles sont jolies, les Probas!”



TIME REVERSAL

But here with a twist: It pays to look at trajectories in the
reverse direction of time.

A very strong hint, as to why such an approach might pay,
comes from the fact that the likelihood ratio

`(t, x) :=
p(t, x)

q(x)
= p(t, x) e 2 Ψ(x) , x ∈ Rn ,

which is of great importance in everything that goes on here,
satisfies not a forward but a backward Kolmogorov equation:

∂t`(t, x) =
1

2
∆`(t, x)−

〈
∇`(t, x),∇Ψ(x)

〉
Rn .



We fall back now on a long line that stretches back to Schrödinger
(1931), Kolmogorov (1937) and passes, via Nelson (1966), to
Föllmer (1985, 86), Haussmann & Pardoux (1986), and finally
Meyer (1994).

So we fix T ∈ (t0,∞), and look at the time-reversed process
X (t − s), 0 ≤ s ≤ T and at the filtration it generates:

G(T − s) := σ
(
X (T − u), 0 ≤ u ≤ s

)
, 0 ≤ s ≤ T .

• How does this look like? Is it (strongly) Markovian?
is it a semimartingale? is it a diffusion?



It stands to reason that, if you want to go backwards from where
you are, you’d better know how you got there in the first place. Of
course, we have known this since the time of Ariadne and Perseus;
here, it means we have to know the transition probabilities.

. Turns out, Ariadne’s thread is given here by the gradient of the
log-transition-probability-density function — which acts here as an
additive component to the potential:

dX (T − s) = ∇
(

log p
(
T − s, ·

)
+ Ψ

)(
X (T − s)

)
ds + dW (T − s)

= ∇
(

log `
(
T − s,X (T − s)

)
−Ψ

(
X (T−s)

))
ds +dW (T−s)

where
(
W (T − s)

)
0≤s≤T is a P−Brownian motion of the time-

reversed filtration.



THEOREM: de Bruijn Backwards Martingale.
Consider the cumulative Fisher information process

F (T − s) :=
1

2

∫ s

0

∣∣∇ log `(T − u,X (T − u))
∣∣2 du , 0 ≤ s ≤ T

from the right. Then EP(F (0)) <∞ , and the process

M(T − s) := log

(
`(T − s,X (T − s))

`(T ,X (T ))

)
− F (T − s)

=

∫ s

0

〈
∇ log `(T − u,X (T − u)), dW (T − u)

〉
Rn

is a square-integrable P−martingale of the backwards filtration,
with 〈M〉 = 2F .



The de Bruijn dissipation of relative entropy identity

H(P(t)|Q)− H(P(t0)|Q) =EP
[

log

(
`(t,X (t))

`(t0,X (t0))

)]

= − 1

2

∫ t

t0

I (P(θ)|Q) dθ

for t ≥ t0 follows from this right away, just by taking expectations.



TIME REVERSAL: THE PERTURBED CASE

In a completely analogous manner, we carry out this analysis also
in the “perturbed” case.

Turns out, we have the dynamics

dX (T−s) = ∇
(
log pβ + Ψ+B

)
(T−s,X (T−s))ds + dW

β
(T−s)

= ∇
(
log `β −Ψ+B

)
(T − s,X (T − s))ds + dW

β
(T − s)

with
(
W

β
(T − s)

)
0≤s≤T a Pβ−Brownian motion of the time-

reversed filtration.



THEOREM: “Perturbed” de Bruijn Backwards Martingale.
Consider the Fisher information process for the perturbed
dynamics, accumulated from the right

F β(T − s) :=

∫ s

0

[ 1

2

∣∣∇ log `β(T − u,X (T − u))
∣∣2

+
(〈
β, 2Ψ

〉
Rn − div (β)

)(
X (T − u)

)]
du ,

for 0 ≤ s ≤ T − t0. Then EPβ(F (t0)) <∞ , and the process

Mβ(T − s) := log

(
`β(T − s,X (T − s))

`β(T ,X (T ))

)
− F β(T − s)

=

∫ s

0

〈
∇ log `β(T − u,X (T − u)), dW

β
(T − u)

〉
Rn

is a square-integrable Pβ−martingale of the backwards filtration,
with 〈Mβ〉 = 2F β.



Once again, the “perturbed” de Bruijn identity

H(Pβ(t)|Q)− H(Pβ(t0)|Q) = EPβ
[

log

(
`β(t,X (t))

`β(t0,X (t0))

)]

=

∫ t

t0

EPβ
(
− 1

2

∣∣∇ log `β(θ,X (θ))
∣∣2+

+
(

div (β)−
〈
β, 2∇Ψ

〉
Rn

)(
X (θ)

))
dθ

for t ≥ t0 follows from this right away, just by taking expectations.

. We obtain now the perturbed (HI) identity, simply dividing by
t − t0, letting t ↓ t0, and integrating by parts.



TECHNICAL WORK

Lots of technical details are here under the rug. The indicated
derivatives exist only outside a (countable, at most) set of
exceptional points.

Very delicate analysis is necessary, in order to show that the
exceptional set for the temporal dissipation of relative entropy
is the same for the perturbed case, as for the unperturbed.

And even more delicate analysis is necessary, in order to show that
the above set is also the exceptional set for the temporal growth of
the Wasserstein distance along the Fokker-Planck flow — both
unperturbed, and perturbed.



TRAJECTORIAL RATES OF RELATIVE ENTROPY
DISSIPATION

With 0 < t0 < T − s < T , we have:

lim
s↑T−t0

1

T − t0 − s
EP
[

log

(
`(T − s,X (T − s))

`(t0,X (t0))

) ∣∣∣∣G(T − s)

]

= −1

2

∣∣∇ log `
(
t0,X (t0)

)∣∣2 ,

lim
s↑T−t0

1

T − t0 − s
log

(
`β(T − s,X (T − s))

` (T − s,X (T − s))

)
=
(

div(β) +
〈
β,∇ log p(t0, ·)

〉
Rn

)(
X (t0)

)
.



lim
s↑T−t0

1

T − t0 − s
EP
[

log

(
`β(T − s,X (T − s))

`β(t0,X (t0))

) ∣∣∣∣G(T − s)

]

=
(

div(β) +
〈
β,∇ log p(t0, ·)

〉
Rn

)(
X (t0)

)
− 1

2

∣∣∇ log `
(
t0,X (t0)

)∣∣2 ,

lim
s↑T−t0

1

T − t0 − s
EPβ

[
log

(
`β(T − s,X (T − s))

`β(t0,X (t0))

) ∣∣∣∣G(T − s)

]

=
(

div(β)−
〈
β,∇ log p(t0, ·)

〉
Rn

)(
X (t0)

)
− 1

2

∣∣∇ log `
(
t0,X (t0)

)∣∣2 ,



A SECOND EYE-OPENER: IN A SPECIAL CASE

Suppose q(x) = e −2Ψ(x) is a probability density function.

Imagine starting the Langevin-Smoluchowski diffusion

dX (t) = −∇Ψ
(
X (t)

)
dt + dW (t)

with X (0) — thus also X (t) for all t > 0 — having this invariant
density, and denote as Q the probability measure induced on
C
(
[0,∞) : Rn

)
by the continuous process X (·).

. Then the time-reversed likelihood process

`
(
T − s,X (T − s)

)
, 0 ≤ s ≤ T is a Q−martingale

of the time-reversed filtration (Fontbona & Jourdain (2016)),
for any given T ∈ (0,∞).



And the decrease of the relative entropy

H
(
P(T )

∣∣Q) = EP[ log `
(
T ,X (T )

)]
= EQ[`(T ,X (T )

)
log `

(
T ,X (T )

)]
is a direct consequence of the Jensen inequality.



THE HWI INEQUALITY IN THE “CONVEX” CASE

Let us suppose from now onward that Q ∈ P2(Rn) , and that the
potential satisfies the convexity condition

D2Ψ(x) ≥ κ Id , ∀ x ∈ Rn

for some real number κ. We claim that the perturbed (HI) identity
we established in this case a few slides back contains, in seminal
form, the celebrated Otto-Villani (2000) HWI inequality

H(P0|Q)− H(P1|Q) ≤ W (P0,P1)
√

I (P0|Q) −
(
κ/2
)
W 2(P0,P1).

. When κ > 0, this inequality leads to the Talagrand (1996) inequality,
to the Gross (1974) Log-Sobolev inequality, to the Poincaré inequality,
and to the exponential dissipation of relative entropy

H
(
P(t)|Q

)
≤ H

(
P(0)|Q

)
e −κt .



Pick two probability measures P0, P1 in the Wasserstein space
P2(Rn) , with compactly supported densities to make life simple
(though ultimately not necessary).

Transport P0 to P1 by means of a constant-speed geodesic(
Pt

)
0≤t≤1

, as follows: for some convex G : Rn → R ,

W 2(P0,P1) =

∫
Rn

∣∣x −∇G (x)
∣∣2P0(dx) =

∥∥γ ∥∥2

L2(P0)

by Brenier (1991), and W (P0,Pt) = t ·
∥∥γ ∥∥

L2(P0)
, 0 ≤ t ≤ 1 for

Pt :=
(
T γ
t

)
#
P0 ; T γ

t (x) := t · ∇G (x) +
(
1− t

)
· x , x ∈ Rn .

Denote the density function of this probability measure Pt by pt(·),
and define the likelihood ratio

`t(x) :=
pt(x)

q(x)
= pt(x) e 2Ψ(x) , x ∈ Rn .



Then, by complete analogy with the perturbed (HI) identity

lim
t↓t0

H
(
Pβ(t)

∣∣Q)− H
(
P(t0)

∣∣Q)
t − t0

=
〈〈

a, c
〉〉

L2(P)
,

a = ∇ log `
(
t0,X (t0)

)
, b = β

(
X (t0)

)
, c = − 1

2
a− b

already discussed, and identifying P(0) = P0, t0 = 0, `(0, ·) = `0:

lim
t↓0

H
(
Pt

∣∣Q)− H
(
P0

∣∣Q)
t

=
〈〈
∇ log `0 , γ

〉〉
L2(P0)

.

These two “slopes” – one along the (curved, perturbed Fokker-
Planck) flow

(
Pβ(t)

)
t≥0

, the other along the straight flow (or

constant-speed geodesic)
(
Pt

)
0≤t≤1

– are EXACTLY THE SAME,
if we select β via

γ = − 1

2
∇ log `0 − β .



Now write the Taylor expansion

h(1) = h(0) + h′(0+) +

∫ 1

0

(
1− t) h′′(t)dt

for this function h(t) := H
(
Pt

∣∣Q). From the above computation
and Cauchy-Schwarz, we get

h′(0+) =
〈〈
∇ log `0 , γ

〉〉
L2(P0)

≥ −
∥∥∇ log `0

∥∥
L2(P0)

·
∥∥γ ∥∥

L2(P0)

= −
√

I (P0|Q) ·W (P0,P1).

On the other hand, McCann’s (1994) displacement convexity
results give

h′′(t) ≥ κ ·W 2
(
P0,P1

)
, 0 ≤ t ≤ 1

and the HWI inequality follows.



EPILOGUE

We are working on exploring the applicability of this trajectorial
methodology to more general settings.
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