On the "blue death" and Poisson measure

Sarah Kaakaï

Laboratoire Manceau de Mathématiques, Le Mans Université

Conférence en l'honneur des 3x25 ans de Nicole El Karoui

Longevity risk and heterogeneity

- Population ageing and uncertainty around future longevity development:
- ▶ **Diverging trends** in longevity: increasing of socioeconomic and geographical gaps in health and mortality.
 - → "Unfair" redistribution properties of pensions systems, errors in funding of annuity and pension obligation...
- Standard tools: Data and mortality rates models Decisive for evaluating pension reforms, computation of regulatory capital, pricing longevity financial products...

Challenges

- Observed mortality is a by-product of the population dynamics (not taken into account in standard models):
 - → Result of complex demographic and social mechanisms.

Limitations of only studying age-specific mortality rates:

- Relationship between macro environment and longevity improvement.
- Understanding the impact of the population and its heterogeneity:
 - □ Aggregation issues.

- Major role of public health measures in the historical reduction of mortality.
 - Ex: water purification in the 1900-30s, campaigns against smoking...
- Complex underlying mechanisms: not smooth, delays, interplay with social and political context...

- Major role of public health measures in the historical reduction of mortality.
 - Ex: water purification in the 1900-30s, campaigns against smoking...
- Complex underlying mechanisms: not smooth, delays, interplay with social and political context...

The example of cholera epidemics in England and France over the 19th century

- Major role of public health measures in the historical reduction of mortality.
 - Ex: water purification in the 1900-30s, campaigns against smoking...
- Complex underlying mechanisms: not smooth, delays, interplay with social and political context...

The example of cholera epidemics in England and France over the 19th century

- ► Cholera: waterborne acute infection nicknamed "blue-death".
- ► Four major outbreaks in Europe over the 19th century (1830-90) causing
 - Tens of thousands of deaths.
 - In 1832: Death of 2% of Paris inhabitants.

- ► Intensity crisis ⇒ catalyst of public health measures
 - First regulation of water supply companies, development of sewage systems, health education...
 - First international meeting of health.
- Different consequences depending on political context and population sizes.
- Delayed impact on Mortality
 - More than 10 international conferences over 50 years (1851-1903) to take action.
 - Later (but major) impact on the increase in the duration of life.

Impact of economic growth

Bidirectional (and controversial) relationship between mortality decline and economic growth.

Birth Death Swap model

Goal: study stochastic heterogeneous population dynamics including

- General random environment,
- Important changes of composition.

Model

- Population process $Z = (Z^i)_{i=1..p}$ structured by discrete subgroups filtration.
- Population evolves according to demographic events (birth, death) or changes of characteristics (swap).
- ▶ Random environment ⇒ stochastic event intensities:

P(ev of type
$$\gamma \in]t, t + dt]|\mathcal{G}_t) \simeq \mu^{\gamma}(\omega, t, Z_t)dt$$
.

Jump measure

Standard framework:

- ▶ Continuous Time Markov Chain: P(ev $\gamma \in]t, t + dt]|\mathcal{G}_t) \simeq \mu^{\gamma}(Z_t)dt$.
- Extension when $\mu(t,\cdot) = (\mu^{\gamma}(t,\cdot))$ is \mathcal{G}_0 -measurable.
- Event intensities characterize the distribution of the population process (martingale problem viewpoint).

Jump measure

Standard framework:

- ▶ Continuous Time Markov Chain: P(ev $\gamma \in]t, t + dt]|\mathcal{G}_t) \simeq \mu^{\gamma}(Z_t)dt$.
- Extension when $\mu(t,\cdot) = (\mu^{\gamma}(t,\cdot))$ is \mathcal{G}_0 -measurable.
- Event intensities characterize the distribution of the population process (martingale problem viewpoint).

This is not the case here

Each type of event (birth, death, swap) $\gamma \in \mathcal{J}$ is associated with the counting process: $N_t^{\gamma} = \sum \mathbb{1}_{\{\Delta Z_s = \phi(\gamma)\}}$

$$N_t^{\gamma} = \sum_{0 < s \leqslant t} \mathbb{1}_{\{\Delta Z_s = \phi(\gamma)\}} \tag{1}$$

Pathwise representation of the jump measure $\mathbf{N} = (N^{\gamma})_{\gamma \in \mathcal{J}}$ (in the spirit of Bremaud Massoulié (1998))

Pathwise representation and strong domination

▶ Thinning and projection of extended Poisson measure on random sets:

$$\mathbf{N}_t = \int_0^t \int_{\mathbb{R}^+} \mathbb{1}_{\{\theta \leqslant \boldsymbol{\mu}(s, Z_{s^-})\}} \mathbf{Q}(\mathrm{d}s, \mathrm{d}\theta), \quad Z_t = F(Z_0, \mathbf{N}_t). \tag{2}$$

Pathwise representation and strong domination

▶ Thinning and projection of extended Poisson measure on random sets:

$$\mathbf{N}_t = \int_0^t \int_{\mathbb{R}^+} \mathbb{1}_{\{\theta \leqslant \boldsymbol{\mu}(s, Z_{s^-})\}} \mathbf{Q}(\mathrm{d}s, \mathrm{d}\theta), \quad Z_t = F(Z_0, \mathbf{N}_t). \tag{2}$$

Existence of non-explosive solutions: control birth intensities

$$\mu^b(\omega, t, z) \leqslant k_t \mathbf{g}(z^{\natural}),$$
 (3)

with **g** verifying $\sum_{n\geqslant 1}\frac{1}{\sum g^i(n)}=\infty.$

Proposition

There exists a unique well-defined solution \mathbf{N} of (2), strongly dominated by a multivariate counting process $\mathbf{G} : \mathbf{G} - \mathbf{N}$ is a multivariate counting process.

Population with two time-scales

Study of the population evolution when composition changes occurs at a fast pace in comparison with the demographic scale.

► Also applications in ecology (ex: viability in patchy environment).

Population with two time-scales

Study of the population evolution when composition changes occurs at a fast pace in comparison with the demographic scale.

- ▶ Also applications in ecology (ex: viability in patchy environment).
- ▶ **Hyp**: intensity of swap events $\sim O(\frac{1}{\epsilon}) >>$ demographic events $\sim O(1)$

$$d\mathbf{N}_t^{s,\epsilon} = \mathbf{Q}^s(\mathrm{d}t, [0, \frac{1}{\epsilon}\boldsymbol{\mu}^s(t, Z_{t^-}^\epsilon)]), \quad d\mathbf{N}_t^{\mathrm{dem},\epsilon} = \mathbf{Q}^{\mathrm{dem}}(\mathrm{d}t, [0, \boldsymbol{\mu}^{\mathrm{dem}}(t, Z_{t^-}^\epsilon)]).$$

Population with two time-scales

Study of the population evolution when composition changes occurs at a fast pace in comparison with the demographic scale.

- ► Also applications in ecology (ex: viability in patchy environment).
- ▶ **Hyp**: intensity of swap events $\sim O(\frac{1}{\epsilon}) >>$ demographic events $\sim O(1)$

$$d\mathbf{N}_t^{s,\epsilon} = \mathbf{Q}^s(\mathrm{d}t, [0, \frac{1}{\epsilon}\boldsymbol{\mu}^s(t, Z_{t^-}^\epsilon)]), \quad d\mathbf{N}_t^{\mathrm{dem},\epsilon} = \mathbf{Q}^{\mathrm{dem}}(\mathrm{d}t, [0, \boldsymbol{\mu}^{\mathrm{dem}}(t, Z_{t^-}^\epsilon)]).$$

What can we say about the aggregated population?

$$Z_t^{
abla,\epsilon} = \sum_{i=1}^p Z_t^i = F(Z_0, \mathbf{N}_t^{\mathrm{dem},\epsilon}),$$

Aggregated birth and death intensities:

$$\mu^{b,\natural}(t,Z_t) = \sum_{i=1}^{p} \mu^{b,i}(t,Z_t), \quad \mu^{d,\natural}(t,Z_t) = \sum_{i=1}^{p} \mu^{d,i}(t,Z_t)$$

Pure Swap process

Pure swap processes X of \mathcal{G}_t -intensity μ^s :

- ▶ Population with NO demographic events.
- ▶ Constant size: $X_0^{\natural} = d \Rightarrow X_t = d \ (X \in \mathcal{U}_d$, populations of size d).

$$f(X_t) - \int_0^t \underbrace{\sum_{i \neq j} \left(f(X_s + \mathbf{e}_j - \mathbf{e}_i) - f(X_s) \right) \mu^{(i,j)}(s, X_s) \mathrm{d}s}_{L_s^{\mathrm{sw}} f(X_s)} \text{ (local) martingale}$$

Assumption There exists a unique $\mathcal{O} \otimes \mathcal{P}(\mathbb{N})$ -measurable random kernel $(\Gamma(\omega, t, n, \mathrm{d}z))$ such that $\forall n \geq 0$, $t \geq 0$ and $f : \mathbb{N}^p \mapsto \mathbb{R}$:

$$\Gamma(t, n, L_t^{\text{sw}} f \mathbb{1}_{\mathcal{U}_n}) = \int_{\mathcal{U}_n} L_t^{\text{sw}} f(z) \Gamma(t, n, dz) = 0.$$
 (4)

Averaging result

Theorem (partial)

Under Assumption 4, the **aggregated processes** $Z^{\epsilon, \natural}$ converge in distribution to a BD process \bar{Z}^{\natural} of intensity:

$$\lambda^b(t,\bar{Z}_t^{\natural}) = \int_{\mathcal{U}_{\bar{Z}_t^{\natural}}} \mu^{b,\natural}(t,z) \Gamma(t,\bar{Z}_t^{\natural},\mathrm{d}z), \quad \lambda^d(t,\bar{Z}_t^{\natural}) = \int_{\mathcal{U}_{\bar{Z}_t^{\natural}}} \mu^{d,\natural}(t,z) \Gamma(t,\bar{Z}_t^{\natural},\mathrm{d}z).$$

- Main problem: stochastic intensity functional $\mu(\omega, t, \cdot)$ (no regularity) \Rightarrow extension of existing results (Kurtz (1992), Yin and Zhang (2004)).
- ▶ Tools: strong domination construction and stable convergence.

Thank you for you attention ...

Thank you for you attention ...
and Happy birthday Nicole (and please
be on time)!