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Motivation

Volatility indices, such as the VIX index, are not only used as
market-implied indicators of volatility.

Futures and options on these indices are also widely used as
risk-management tools to hedge the volatility exposure of options
portfolios.

Existence of a liquid market for these futures and options =⇒ need for
models that jointly calibrate to the prices of options the underlying asset
and prices of volatility derivatives.

Since VIX options started trading in 2006, many researchers and
practitioners have tried to build a model that jointly and exactly calibrates
to the prices of S&P 500 (SPX) options, VIX futures and VIX options.

Very challenging problem, especially for short maturities.
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Motivation

The very large negative skew of short-term SPX options, which in
continuous models implies a very large volatility of volatility, seems
inconsistent with the comparatively low levels of VIX implied
volatilities.

For example the double mean-reverting model of Gatheral (2008), though
it is very flexible, cannot perfectly fit both the negative at-the-money SPX
skew (not large enough in absolute value) and the at-the-money VIX
implied volatility (too large) for short maturities up to five months.

One should decrease the volatility of volatility to decrease the latter, but
this would also decrease the former, which is already too small.

See G. (2017, 2018).
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Skewed rough Bergomi: Calibration to VIX future and VIX options (March
21, 2018)
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Skewed rough Bergomi calibrated to VIX: SPX smile (March 21, 2018)
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Skewed rough Bergomi calibrated to VIX: SPX smile

Not enough ATM skew for SPX, despite pushing negative spot-vol
correlation as much as possible.

I get similar results when I use the skewed 2-factor Bergomi model
instead of the skewed rough Bergomi model.
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SLV calibrated to SPX: VIX smile (Aug 1, 2018)

SLV model, SV = skewed 2-factor Bergomi model
SV params optimized to fit VIX smile
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Related works with continuous models on the SPX

Fouque-Saporito (2017), Heston with stochastic vol-of-vol. Problem: their
approach does not apply to short maturities (below 4 months), for which
VIX derivatives are most liquid and the joint calibration is most difficult.

Goutte-Ismail-Pham (2017), Heston with parameters driven by a Hidden
Markov jump process. Problem: the SPX smile used in their calibration
tests is erroneous.

Jacquier-Martini-Muguruza, On the VIX futures in the rough Bergomi
model (2017):

“Interestingly, we observe a 20% difference between the [vol-of-vol]
parameter obtained through VIX calibration and the one obtained
through SPX. This suggests that the volatility of volatility in the SPX
market is 20% higher when compared to VIX, revealing potential data
inconsistencies (arbitrage?).”
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Conjecture

Consider continuous models on SPX that are calibrated to SPX smile:

dSt
St

=
at√

E[a2
t |St]

σloc(t, St) dWt.

Define

VIX2
T =

1

τ

∫ T+τ

T

E
[

a2
t

E[a2
t |St]

σ2
loc(t, St)

∣∣∣∣FT ] dt.
Conjecture: Continuous-time continuous-paths models for the SPX
cannot fit VIX smile for small T and strikes K around the money:

inf
(at)

E [(VIXT −K)+] > Cmkt
VIX (T,K).

Controlled singular Mc-Kean SDE, mean-field HJB PDE.

Does not mean there is an arbitrage!
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Motivation

To try to jointly fit the SPX and VIX smiles, many authors have
incorporated jumps in the dynamics of the SPX: Sepp, Cont-Kokholm,
Papanicolaou-Sircar, Baldeaux-Badran, Pacati et al, Kokholm-Stisen...

Jumps offer extra degrees of freedom to decouple the ATM SPX skew and
the ATM VIX implied volatility.

So far all the attempts at solving the joint SPX/VIX smile calibration
problem could only produce an approximate fit.
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Motivation

We solve this puzzle using a completely different approach: instead of
postulating a parametric continuous-time (jump-)diffusion model on the
SPX, we build a nonparametric discrete-time model.

Discrete-time: to decouple SPX skew and VIX implied vol.

Nonparametric: to perfectly fit the smiles.

Given a VIX future maturity T1, we build a joint probability measure on
(S1, V, S2) which is perfectly calibrated to the SPX smiles at T1 and
T2 = T1 + 30 days, and the VIX future and VIX smile at T1.

S1: SPX at T1, V : VIX at T1, S2: SPX at T2.

Our model satisfies the martingality constraint on the SPX as well as the
requirement that the VIX at T1 is the implied volatility of the 30-day
log-contract on the SPX (consistency condition).

The discrete-time model is cast as the solution of a dispersion-
constrained martingale transport problem which is solved using the
Sinkhorn algorithm, in the spirit of De March and Henry-Labordère
(2019).
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Setting and notation

For simplicity: zero interest rates, repos, and dividends.

µ1 = risk-neutral distribution of S1 ←→ market smile of S&P at T1.

µV = risk-neutral distribution of V ←→ market smile of VIX at T1.

µ2 = risk-neutral distribution of S2 ←→ market smile of S&P at T2.

FV : value at time 0 of VIX future maturing at T1.

We denote Ei := Eµi , EV := EµV and assume

Ei[Si] = S0, Ei[| lnSi|] <∞, i ∈ {1, 2}; EV [V ] = FV , EV [V 2] <∞.

No calendar arbitrage ⇐⇒ µ1 ≤c µ2 (convex order)

Julien Guyon Bloomberg L.P.
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Setting and notation

V 2 := (VIXT1)2 := − 2

τ
PriceT1

[
ln

(
S2

S1

)]
= PriceT1

[
L

(
S2

S1

)]
τ = 30 days.

L(x) := − 2
τ

lnx: convex, decreasing.
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Superreplication, duality
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Superreplication: primal problem

Following De Marco-Henry-Labordère (2015), G.-Menegaux-Nutz (2017):

Available instruments:

At time 0:
u1(S1): SPX vanilla payoff maturity T1 (including cash)
u2(S2): SPX vanilla payoff maturity T2

uV (V ): VIX vanilla payoff maturity T1

Cost: MktPrice[u1(S1)] + MktPrice[u2(S2)] + MktPrice[uV (V )]

At time T1:
∆S(S1, V )(S2 − S1): delta hedge
∆L(S1, V )(L(S2/S1)− V 2): buy ∆L(S1, V ) log-contracts
Cost: 0

Shorthand notation:

∆(S)(s1, v, s2) := ∆(s1, v)(s2 − s1), ∆(L)(s1, v, s2) := ∆(s1, v)

(
L

(
s2

s1

)
− v2

)

Julien Guyon Bloomberg L.P.

The Joint S&P 500/VIX Smile Calibration Puzzle Solved



Duality Joint SPX/VIX arbitrage Build a model in P(µ1, µV , µ2) Implementation details Numerical experiments Multi-maturity

Superreplication: primal problem

The model-independent no-arbitrage upper bound for the derivative with
payoff f(S1, V, S2) is the smallest price at time 0 of a superreplicating
portfolio:

Pf := inf
Uf

{
E1[u1(S1)] + EV [uV (V )] + E2[u2(S2)]

}
Uf : set of integrable superreplicating portfolios, i.e., the set of all
measurable functions (u1, uV , u2,∆S ,∆L) with u1 ∈ L1(µ1),
uV ∈ L1(µV ), u2 ∈ L1(µ2), ∆S ,∆L : R>0 × R≥0 → R, that satisfy the
superreplication constraint: ∀(s1, s2, v) ∈ R2

>0 × R≥0,

u1(s1) + uV (v) + u2(s2) + ∆
(S)
S (s1, v, s2) + ∆

(L)
L (s1, v, s2) ≥ f(s1, v, s2).

Linear program.

Julien Guyon Bloomberg L.P.
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Superreplication: dual problem

P(µ1, µV , µ2): set of all the probability measures µ on R>0 × R≥0 × R>0

such that

S1 ∼ µ1, V ∼ µV , S2 ∼ µ2, Eµ [S2|S1, V ] = S1, Eµ
[
L

(
S2

S1

)∣∣∣∣S1, V

]
= V 2.

Dual problem:

Df := sup
µ∈P(µ1,µV ,µ2)

Eµ[f(S1, V, S2)].

Dispersion-constrained martingale optimal transport problem.

Eµ[S2|S1, V ] = S1: martingality condition of the SPX index, condition on
the average of the distribution of S2 given S1 and V .

Eµ[L(S2/S1)|S1, V ] = V 2: consistency condition, condition on dispersion
around the average.
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Superreplication: absence of a duality gap

Theorem

Let f : R>0 × R≥0 × R>0 → R be upper semicontinuous and satisfy

|f(s1, v, s2)| ≤ C
(
1 + s1 + s2 + |L(s1)|+ |L(s2)|+ v2)

for some constant C > 0. Then

Pf := inf
Uf

{
E1[u1(S1)] + EV [uV (V )] + E2[u2(S2)]

}
= sup
µ∈P(µ1,µV ,µ2)

Eµ[f(S1, V, S2)] =: Df .

Moreover, Df 6= −∞ if and only if P(µ1, µV , µ2) 6= ∅, and in that case the
supremum is attained.

Proof: straightforward adaptation of the proof of Theorem 1 in Beiglbock et al
(martingale optimal transport, 2013).

Julien Guyon Bloomberg L.P.
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Superreplication of forward-starting options

The knowledge of µ1 and µ2 gives little information on the prices of
forward starting options Eµ[f(S2/S1)].

Computing the upper and lower bounds of these prices is precisely the
subject of classical optimal transport.

Adding the arbitrage-freeness constraint that (S1, S2) is a martingale leads
to more precise bounds, as this provides information on the conditional
average of S2/S1 given S1: Martingale optimal transport, see
Henry-Labordère (2017).

Adding VIX market data information produces even more precise bounds,
as it information on the conditional dispersion of S2/S1, which is
controlled by the VIX V : Dispersion-constrained martingale optimal
transport.

Adding VIX market data may possibly reveal a joint SPX/VIX arbitrage.
Corresponds to P(µ1, µV , µ2) = ∅ (see next slides).

In the limiting case where P(µ1, µV , µ2) = {µ0} is a singleton, the joint
SPX/VIX market data information completely specifies the joint
distribution of (S1, S2), hence the price of forward starting options.

Julien Guyon Bloomberg L.P.
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Joint SPX/VIX arbitrage
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Joint SPX/VIX arbitrage

U0 = the portfolios (u1, u2, uV ,∆
S ,∆L) superreplicating 0:

u1(s1)+u2(s2)+uV (v)+∆S(s1, v)(s2−s1)+∆L(s1, v)

(
L

(
s2

s1

)
− v2

)
≥ 0

An (S1, S2, V )-arbitrage is an element of U0 with negative price:

MktPrice[u1(S1)] + MktPrice[u2(S2)] + MktPrice[uV (V )] < 0

Equivalently, there is an (S1, S2, V )-arbitrage if and only if

inf
U0

{MktPrice[u1(S1)] + MktPrice[u2(S2)] + MktPrice[uV (V )]} = −∞

Julien Guyon Bloomberg L.P.
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Consistent extrapolation of SPX and VIX smiles

If EV [V 2] 6= E2[L(S2)]−E1[L(S1)], there is a trivial (S1, S2, V )-arbitrage.
For instance, if EV [V 2] < E2[L(S2)]− E1[L(S1)], pick

u1(s1) = L(s1), u2(s2) = −L(s2), uV (v) = v2, ∆S(s1, v) = 0, ∆L(s1, v) = 1.

=⇒ We assume that

EV [V 2] = E2[L(S2)]− E1[L(S1)]. (2.1)

Violations of (2.1) in the market have been reported, suggesting arbitrage
opportunities, see, e.g., Section 7.7.4 in Bergomi (2016).

However, the two quantities in (2.1) do not purely depend on market data.
The l.h.s. depends on an (arbitrage-free) extrapolation of the smile of V
beyond the last quoted strikes, while the r.h.s. depends on (arbitrage-free)
extrapolations of the SPX smile at maturities T1 and T2.

The reported violations of (2.1) actually rely on some arbitrary smile
extrapolations.

G. (2018) explains how to build consistent extrapolations of the VIX
and SPX smiles so that (2.1) holds.

Julien Guyon Bloomberg L.P.
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Joint SPX/VIX arbitrage

Theorem (G., 2018)

The following assertions are equivalent:

(i) The market is free of (S1, S2, V )-arbitrage,

(ii) P(µ1, µV , µ2) 6= ∅,
(iii) There exists a coupling ν of µ1 and µV such that Lawν(S1, L(S1) + V 2)

and Lawµ2(S2, L(S2)) are in convex order, i.e.,
Eν [f(S1, L(S1) + V 2)] ≤ E2[f(S2, L(S2))] for any convex function
f : R>0 × R→ R.

(i) ⇐⇒ (ii): By duality (Theorem 1), we have P0 = D0. Now, by definition,
the market is free of (S1, S2, V )-arbitrage if and only if P0 = 0, and from
Theorem 1, P(µ1, µV , µ2) 6= ∅ if and only if D0 6= −∞, in which case D0 = 0.

Julien Guyon Bloomberg L.P.
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Joint SPX/VIX arbitrage

(ii) ⇐⇒ (iii): Define M1 = (S1, L(S1) + V 2), M2 = (S2, L(S2)), and

µM2(dx, dy) = µ2(dx)δL(x)(dy).

Let Π(µ1, µV ) denote the set of transport plans from µ1 to µV , i.e., the set of
all couplings of µ1 and µV .
For ν ∈ Π(µ1, µV ), denote by µνM1

the distribution of M1 under ν and by
M(ν, µ2) the set of all probability measures µ on R>0 × R≥0 × R>0 s.t.

M1 ∼ µνM1
, M2 ∼ µM2 , Eµ [M2|M1] = M1.

Then

P(µ1, µV , µ2) =
⋃

ν∈Π(µ1,µV )

M(ν, µ2).

By Strassen’s theorem, each M(ν, µ2) is nonempty if and only if µνM1
and µM2

are in convex order.
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Joint SPX/VIX arbitrage

(i) The market is free of (S1, S2, V )-arbitrage,

(ii) P(µ1, µV , µ2) 6= ∅,
(iii) There exists a coupling ν of µ1 and µV such that Lawν(S1, L(S1) + V 2)

and Lawµ2(S2, L(S2)) are in convex order.

Directly solving the linear problem associated to (i) is not easy as one
needs to try all possible (u1, uV , u2,∆S ,∆V ) and check the
superreplication constraints for all s1, s2 > 0 and v ≥ 0.

Checking (iii) numerically is difficult as, in dimension two, the extreme
rays of the convex cone of convex functions are dense in the cone
(Johansen 1974), contrary to the case of dimension one where the extreme
rays are the call and put payoffs (Blaschke-Pick 1916).

Instead, we will verify absence of (S1, S2, V )-arbitrage by building –
numerically, but with high accuracy – an element of P(µ1, µV , µ2), thus
checking (ii).

Julien Guyon Bloomberg L.P.
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Build a model in P(µ1, µV , µ2)
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Build a model in P(µ1, µV , µ2)

We explain how to numerically build a model µ ∈ P(µ1, µV , µ2).

We thus solve a longstanding puzzle in derivatives modeling: build an
arbitrage-free model that jointly calibrates to the prices of SPX
options, VIX futures and VIX options.

Our strategy is inspired by the recent work of De March and
Henry-Labordère (2019).

We assume that P(µ1, µV , µ2) 6= ∅ and try to build an element µ in this
set. To this end, we fix a reference probability measure µ̄ on
R>0 × R≥0 × R>0 and look for the measure µ ∈ P(µ1, µV , µ2) that
minimizes the relative entropy H(µ, µ̄) of µ w.r.t. µ̄, also known as the
Kullback-Leibler divergence:

Dµ̄ := inf
µ∈P(µ1,µV ,µ2)

H(µ, µ̄), H(µ, µ̄) :=

{
Eµ
[
ln dµ

dµ̄

]
= Eµ̄

[
dµ
dµ̄

ln dµ
dµ̄

]
if µ� µ̄,

+∞ otherwise.

This is a strictly convex problem that can be solved after dualization
using Sinkhorn’s fixed point iteration (Sinkhorn 1967).
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Build a model in P(µ1, µV , µ2)

M1: set of probability measures on R>0 × R≥0 × R>0.

U : set of all integrable portfolios u = (u1, uV , u2,∆S ,∆L).

Introduce the Lagrange multipliers u = (u1, uV , u2,∆S ,∆L) associated to
the five constraints of P(µ1, µV , µ2) and assume that the inf and sup
operators can be swapped (absence of a duality gap):

Dµ̄ := inf
µ∈P(µ1,µV ,µ2)

H(µ, µ̄)

= inf
µ∈M1

sup
u∈U

{
H(µ, µ̄) + E1[u1(S1)] + EV [uV (V )] + E2[u2(S2)]

−Eµ
[
u1(S1) + uV (V ) + u2(S2) + ∆

(S)
S (s1, v, s2) + ∆

(L)
L (s1, v, s2)

]}
= sup

u∈U
inf

µ∈M1

{
H(µ, µ̄) + E1[u1(S1)] + EV [uV (V )] + E2[u2(S2)]

−Eµ
[
u1(S1) + uV (V ) + u2(S2) + ∆

(S)
S (s1, v, s2) + ∆

(L)
L (s1, v, s2)

]}
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Build a model in P(µ1, µV , µ2)

Dµ̄ = sup
u∈U

inf
µ∈M1

{
H(µ, µ̄) + E1[u1(S1)] + EV [uV (V )] + E2[u2(S2)]

−Eµ
[
u1(S1) + uV (V ) + u2(S2) + ∆

(S)
S (s1, v, s2) + ∆

(L)
L (s1, v, s2)

]}

For any random variable X, denote by µ̄X the probability distribution defined

by dµ̄X
dµ̄

= eX

Eµ̄[eX ]
:

inf
µ∈M1

{H(µ, µ̄)− Eµ[X]} = inf
µ∈M1

Eµ
[
ln
dµ

dµ̄
−X

]
= inf
µ∈M1

Eµ
[
ln

dµ

dµ̄X
+ ln

dµ̄X
dµ̄
−X

]
= inf
µ∈M1

Eµ
[
ln

dµ

dµ̄X
− lnEµ̄[eX ]

]
= inf
µ∈M1

H(µ, µ̄X)−lnEµ̄[eX ] = − lnEµ̄[eX ]

and the infimum is attained at µ = µ̄X since for all µ ∈M1, H(µ, µ̄X) ≥ 0
and H(µ, µ̄X) = 0 if and only if µ = µ̄X .
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Build a model in P(µ1, µV , µ2)

Dµ̄ = sup
u∈U

Ψµ̄(u) =: Pµ̄

where for u = (u1, uV , u2,∆S ,∆L) ∈ U , we have defined

Ψµ̄(u) := E1[u1(S1)] + EV [uV (V )] + E2[u2(S2)]

− lnEµ̄
[
eu1(S1)+uV (V )+u2(S2)+∆

(S)
S

(S1,V,S2)+∆
(L)
L

(S1,V,S2)

]
.

Dµ̄ 6= +∞ if and only if P(µ1, µV , µ2) 6= ∅, and in that case the infimum
defining Dµ̄ is attained. Indeed, µ 7→ H(µ, µ̄) is lower semicontinuous in
the weak topology (Dembo-Zeitouni). Since P(µ1, µV , µ2) is compact in
this topology, the infimum is attained.

If the supremum defining Pµ̄ is attained at u∗ = (u∗1, u
∗
V , u

∗
2,∆

∗
S ,∆

∗
L), the

infimum defining Dµ̄ is reached at

µ∗(ds1, dv, ds2) = µ̄(ds1, dv, ds2)
eu
∗
1(s1)+u∗V (v)+u∗2(s2)+∆

∗(S)
S

(s1,v,s2)+∆
∗(L)
L

(s1,v,s2)

Eµ̄
[
eu
∗
1(S1)+u∗

V
(V )+u∗2(S2)+∆

∗(S)
S

(S1,V,S2)+∆
∗(L)
L

(S1,V,S2)
] .
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Build a model in P(µ1, µV , µ2)

µ∗(ds1, dv, ds2) = µ̄(ds1, dv, ds2)
eu
∗
1(s1)+u∗V (v)+u∗2(s2)+∆

∗(S)
S

(s1,v,s2)+∆
∗(L)
L

(s1,v,s2)

Eµ̄
[
eu
∗
1(S1)+u∗

V
(V )+u∗2(S2)+∆

∗(S)
S

(S1,V,S2)+∆
∗(L)
L

(S1,V,S2)
] .

Ψµ̄ is invariant by translation of u1, uV , and u2: for any constant c ∈ R,
Ψµ̄(u1 + c, uV , u2,∆S ,∆L) = Ψµ̄(u1, uV , u2,∆S ,∆L) (and similarly with
uV and u2); c = cash position =⇒ We will always work with a normalized
version of u∗ ∈ U s.t.

Eµ̄
[
eu
∗
1(S1)+u∗V (V )+u∗2(S2)+∆

∗(S)
S

(S1,V,S2)+∆
∗(L)
L

(S1,V,S2)

]
= 1. (3.1)

The initial, difficult problem of minimizing over µ ∈ P(µ1, µV , µ2) has
been reduced to the simpler problem of maximizing the strictly
concave function Ψµ̄ over u ∈ U . If it exists, the optimum u∗ cancels
the gradient of Ψµ̄:
∂Ψµ̄

∂u1(s1)
=

∂Ψµ̄
∂uV (v)

=
∂Ψµ̄

∂u2(s2)
=

∂Ψµ̄
∂∆S(s1,v)

=
∂Ψµ̄

∂∆L(s1,v)
= 0.
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Equations for u∗ = (u∗1, u
∗
V , u

∗
2,∆

∗
S ,∆

∗
L)

∀s1 > 0, u1(s1) = Φ1(s1;uV , u2,∆S ,∆L)

∀v ≥ 0, uV (v) = ΦV (v;u1, u2,∆S ,∆L)

∀s2 > 0, u2(s2) = Φ2(s2;u1, uV ,∆S ,∆L) (3.2)

∀s1 > 0, ∀v ≥ 0, 0 = Φ∆S (s1, v; ∆S(s1, v),∆L(s1, v))

∀s1 > 0, ∀v ≥ 0, 0 = Φ∆L(s1, v; ∆S(s1, v),∆L(s1, v))

where, imposing the normalization (3.1),

Φ1(s1;uV ,∆S,∆L) := lnµ1(s1) − ln

∫ µ̄(s1, dv, ds2)e
uV (v)+u2(s2)+∆

(S)
S

(s1,v,s2)+∆
(L)
L

(s1,v,s2)


ΦV (v;u1,∆S,∆L) := lnµV (v) − ln

∫ µ̄(ds1, v, ds2)e
u1(s1)+u2(s2)+∆

(S)
S

(s1,v,s2)+∆
(L)
L

(s1,v,s2)


Φ2(s2;u1, uV ,∆S,∆L) := lnµ2(s2) − ln

∫ µ̄(ds1, dv, s2)e
u1(s1)+uV (v)+∆

(S)
S

(s1,v,s2)+∆
(L)
L

(s1,v,s2)



Φ∆S
(s1, v;u2, δS, δL) :=

∫
µ̄(s1, v, ds2)(s2 − s1)e

u2(s2)+δS(s2−s1)+δL

(
L

(
s2
s1

)
−v2

)

Φ∆L
(s1, v;u2, δS, δL) :=

∫
µ̄(s1, v, ds2)

(
L

(
s2

s1

)
− v2

)
e
u2(s2)+δS(s2−s1)+δL

(
L

(
s2
s1

)
−v2

)
.
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Build a model in P(µ1, µV , µ2)

Note that these are also the equations satisfied by the maximum of

Ψ̄µ̄(u) := E1[u1(S1)] + EV [uV (V )] + E2[u2(S2)]

− Eµ̄
[
eu1(S1)+uV (V )+u2(S2)+∆

(S)
S

(S1,V,S2)+∆
(L)
L

(S1,V,S2)

]
.

One could directly get that Dµ̄ = supu∈U Ψ̄µ̄(u) by using the set M+ of
nonnegative measures instead of M1 in (3.1), and by computing the inner
infµ∈M+ in (3.1) by differentiating w.r.t. dµ

dµ̄
.

In any case, the jointly calibrating model reads

µ∗(ds1, dv, ds2) = µ̄(ds1, dv, ds2)eu
∗
1(s1)+u∗V (v)+u∗2(s2)+∆

∗(S)
S

(s1,v,s2)+∆
∗(L)
L

(s1,v,s2).
(3.3)

where u∗ = (u∗1, u
∗
V , u

∗
2,∆

∗
S ,∆

∗
L) is solution of (3.2).

We could have simply postulated a model of the form (3.3); then the five
conditions of P(µ1, µV , µ2) translate into the five equations (3.2).
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Sinkhorn’s algorithm

Sinkhorn’s algorithm (1967) was first used in the context of optimal
transport by Cuturi (2013).

In our context, Sinkhorn’s algorithm is an exponentially fast fixed point
method that iterates computions of one-dimensional gradients to
approximate the optimizer u∗.

Starting from an initial u(0) = (u
(0)
1 , u

(0)
V , u

(0)
2 ,∆

(0)
S ,∆

(0)
L ), we recursively

define u(n+1) knowing u(n) by

∀s1 > 0, u
(n+1)
1 (s1) = Φ1(s1;u

(n)
V , u

(n)
2 ,∆

(n)
S ,∆

(n)
L )

∀v ≥ 0, u
(n+1)
V (v) = ΦV (v;u

(n+1)
1 , u

(n)
2 ,∆

(n)
S ,∆

(n)
L )

∀s2 > 0, u
(n+1)
2 (s2) = Φ2(s2;u

(n+1)
1 , u

(n+1)
V ,∆

(n)
S ,∆

(n)
L )

∀s1 > 0, ∀v ≥ 0, 0 = Φ∆S (s1, v;u
(n+1)
2 ,∆

(n+1)
S (s1, v),∆

(n)
L (s1, v))

∀s1 > 0, ∀v ≥ 0, 0 = Φ∆L(s1, v;u
(n+1)
2 ,∆

(n+1)
S (s1, v),∆

(n+1)
L (s1, v))

until convergence.

Each of the above five lines corresponds to a Bregman projection in the
space of measures.
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Implementation details
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Implementation details

Natural choice: pick a reference measure µ̄ that satisfies all the constraints
of P(µ1, µV , µ2) except S2 ∼ µ2, i.e., pick µ̄ in the set P(µ1, µV ) of all
the probability distributions

µ(ds1, dv, ds2) = ν(ds1, dv)T (s1, v, ds2)

where ν is a coupling of µ1 and µV and the transition kernel T (s1, v, ds2)
satisfies∫

s2 T (s1, v, ds2) = s1,

∫
L(s2)T (s1, v, ds2) = L(s1) + v2

for µ1-a.e. s1 > 0 and µV -a.e. v ≥ 0.

For instance, we may choose

ν = µ1 ⊗ µV , T (s1, v, ds2) is the distribution of s1 exp

(
v
√
τG− 1

2
v2τ

)
,

where G denotes a standard Gaussian random variable.
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Implementation details

Practically, we consider market strikes K := (K1,KV ,K2) and market prices
(C1

K , C
V
K , C

2
K) of vanilla options on S1, V , and S2, and we build the model

µ∗K(ds1, dv, ds2) = µ̄(ds1, dv, ds2)ec
∗+∆0∗

S s1+∆0∗
V v+

∑
K∈K1

a1∗
K (s1−K)+

e
∑
K∈KV

aV ∗K (v−K)++
∑
K∈K2

a2∗
K (s2−K)++∆

∗(S)
S

(s1,v,s2)+∆
∗(L)
L

(s1,v,s2)

where θ∗ := (c∗,∆0∗
S ,∆

0∗
V , a

1∗, aV ∗, a2∗,∆∗S ,∆
∗
L) maximizes

Ψ̄µ̄,K(θ) := c+ ∆0
SS0 + ∆0

V FV +
∑
K∈K1

a1
KC

1
K +

∑
K∈KV

aVKC
V
K +

∑
K∈K2

a2
KC

2
K

−Eµ̄
[
e
c+∆0

SS1+∆0
V V+

∑
K1

a1
K(S1−K)++

∑
KV

aVK(V−K)++
∑
K2

a2
K(S2−K)++∆

(S)
S

(...)+∆
(L)
L

(...)

]
over the set Θ of portfolios θ := (c,∆0

S ,∆
0
V , a

1, aV , a2,∆S ,∆L) such that
c,∆0

S ,∆
0
V ∈ R, a1 ∈ RK1 , aV ∈ RKV , a2 ∈ RK2 , and

∆S ,∆L : R>0 × R≥0 → R are measurable functions of (s1, v).
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Implementation details

This corresponds to solving the entropy minimization problem

Pµ̄,K := inf
µ∈P(K)

H(µ, µ̄) = sup
θ∈Θ

Ψ̄µ̄,K(θ) =: Dµ̄,K

where P(K) denotes the set of probability measures µ on
R>0 × R≥0 × R>0 such that

Eµ[S1] = S0, Eµ[V ] = FV , ∀K ∈ K1, Eµ [(S1 −K)+] = C1
K ,

∀K ∈ KV , Eµ [(V −K)+] = CVK , ∀K ∈ K2, Eµ [(S2 −K)+] = C2
K ,

Eµ [S2|S1, V ] = S1, Eµ
[
L

(
S2

S1

)∣∣∣∣S1, V

]
= V 2.

One can directly check that model µ∗K is an arbitrage-free model that
jointly calibrates the prices of SPX futures, options, VIX future, and VIX
options. Indeed, if Ψ̄µ̄,K reaches its maximum at θ∗, then θ∗ is solution to
∂Ψ̄µ̄,K
∂θi

(θ) = 0:
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Implementation details

Ψ̄µ̄,K(θ) := c+ ∆0
SS0 + ∆0

V FV +
∑
K∈K1

a1
KC

1
K +

∑
K∈KV

aVKC
V
K +

∑
K∈K2

a2
KC

2
K

−Eµ̄
[
e
c+∆0

SS1+∆0
V V+

∑
K1

a1
K(S1−K)++

∑
KV

aVK(V−K)++
∑
K2

a2
K(S2−K)++∆

(S)
S

(...)+∆
(L)
L

(...)

]
∂Ψ̄µ̄,K

∂c
= 0 : Eµ̄

[
dµ∗K
dµ̄

]
= 1

∂Ψ̄µ̄,K

∂∆0
S

= 0 : Eµ̄
[
S1
dµ∗K
dµ̄

]
= S0

∂Ψ̄µ̄,K

∂∆0
V

= 0 : Eµ̄
[
V
dµ∗K
dµ̄

]
= FV

∂Ψ̄µ̄,K

∂a1
K

= 0 : Eµ̄
[
(S1 −K)+

dµ∗K
dµ̄

]
= C1

K

∂Ψ̄µ̄,K

∂aVK
= 0 : Eµ̄

[
(V −K)+

dµ∗K
dµ̄

]
= CVK

∂Ψ̄µ̄,K

∂a2
K

= 0 : Eµ̄
[
(S2 −K)+

dµ∗K
dµ̄

]
= C2

K

∂Ψ̄µ̄,K

∂∆S(s1, v)
= 0 : Eµ̄

[
(S2 − S1)

dµ∗K
dµ̄

∣∣∣∣S1 = s1, V = v

]
= 0, ∀s1 ≥ 0, v > 0

∂Ψ̄µ̄,K

∂∆L(s1, v)
= 0 : Eµ̄

[(
L

(
S2

S1

)
− V 2

)
dµ∗K
dµ̄

∣∣∣∣S1 = s1, V = v

]
= 0, ∀s1 ≥ 0, v > 0
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Implementation details

We use θ(0) = 0 as the starting point of the Sinkhorn algorithm.

Integrals estimated using Gaussian quadrature; Gauss-Legendre when we
integrate over s1 and v, and Gauss-Hermite when we integrate over s2.

While the expression for c(n+1) is explicit, computing the other parameters
requires using a one-dimensional root solver; we use Newton’s algorithm.

As an exception, for each point s1 and v in the quadrature,
(∆

(n+1)
S (s1, v),∆

(n+1)
L (s1, v)) are jointly computed using the

Levenberg-Marquardt algorithm.

Enough accuracy is typically reached after about a hundred iterations and
gives us θ∗, hence µ∗K.

If the Sinkhorn algorithm diverges, then Dµ̄,K = +∞, so Pµ̄,K = +∞,
which means that P(K) = ∅, i.e., there exists a joint SPX/VIX
arbitrage (based only on K).
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Numerical experiments
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August 1, 2018, T1 = 21 days
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August 1, 2018, T1 = 21 days
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August 1, 2018, T1 = 21 days

Figure: Joint distribution of (S1, V ) and local VIX function VIXloc(s1)

VIX2
loc(S1) := Eµ

∗
K
[
V 2
∣∣S1

]
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August 1, 2018, T1 = 21 days

Figure: Conditional distribution of S2 given (s1, v) under µ∗K for different vales of
(s1, v): s1 ∈ {2571, 2808, 3000}, v ∈ {10.10, 15.30, 23.20, 35.72}%, and distribution

of the normalized return R :=
ln(S2/S1)

V
√
τ

+ 1
2
V
√
τ
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August 1, 2018, T1 = 21 days

Figure: Smile of forward starting call options (S2/S1 −K)+
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August 1, 2018, T1 = 21 days

Figure: Optimal functions u∗1, u∗V and u∗2
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August 1, 2018, T1 = 21 days

Figure: Optimal functions ∆∗S(s1, v) and ∆∗L(s1, v) for (s1, v) in the quadrature grid

Julien Guyon Bloomberg L.P.

The Joint S&P 500/VIX Smile Calibration Puzzle Solved



Duality Joint SPX/VIX arbitrage Build a model in P(µ1, µV , µ2) Implementation details Numerical experiments Multi-maturity

August 1, 2018, T1 = 49 days
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August 1, 2018, T1 = 49 days
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August 1, 2018, T1 = 49 days

Figure: Joint distribution of (S1, V ) and local VIX function VIXloc(s1)
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August 1, 2018, T1 = 49 days

Figure: Conditional distribution of S2 given (s1, v) under µ∗K for different vales of
(s1, v): s1 ∈ {2571, 2808, 3000}, v ∈ {10.10, 15.30, 23.20, 35.72}%, and distribution

of the normalized return R :=
ln(S2/S1)
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√
τ

+ 1
2
V
√
τ

Julien Guyon Bloomberg L.P.

The Joint S&P 500/VIX Smile Calibration Puzzle Solved



Duality Joint SPX/VIX arbitrage Build a model in P(µ1, µV , µ2) Implementation details Numerical experiments Multi-maturity

August 1, 2018, T1 = 49 days

Figure: Smile of forward starting call options (S2/S1 −K)+

Julien Guyon Bloomberg L.P.

The Joint S&P 500/VIX Smile Calibration Puzzle Solved



Duality Joint SPX/VIX arbitrage Build a model in P(µ1, µV , µ2) Implementation details Numerical experiments Multi-maturity

August 1, 2018, T1 = 49 days

Figure: Optimal functions u∗1, u∗V and u∗2
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August 1, 2018, T1 = 49 days

Figure: Optimal functions ∆∗S(s1, v) and ∆∗L(s1, v) for (s1, v) in the quadrature grid
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December 24, 2018, T1 = 23 days: large VIX, FV ≈ 26%
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December 24, 2018, T1 = 23 days
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December 24, 2018, T1 = 23 days

Figure: Joint distribution of (S1, V ) and local VIX function VIXloc(s1)

VIX2
loc(S1) := Eµ

∗
K
[
V 2
∣∣S1

]
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December 24, 2018, T1 = 23 days

Figure: Conditional distribution of S2 given (s1, v) under µ∗K for different vales of
(s1, v): s1 ∈ {2571, 2808, 3000}, v ∈ {10.10, 15.30, 23.20, 35.72}%, and distribution

of the normalized return R :=
ln(S2/S1)

V
√
τ
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December 24, 2018, T1 = 23 days

Figure: Smile of forward starting call options (S2/S1 −K)+
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December 24, 2018, T1 = 23 days

Figure: Optimal functions u∗1, u∗V and u∗2
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December 24, 2018, T1 = 23 days

Figure: Optimal functions ∆∗S(s1, v) and ∆∗L(s1, v) for (s1, v) in the quadrature grid
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Maturity issue

SPX options maturity T ′1 = T1 + 2 days or T1 − 5 days.
Rigorous treatment: introduce S′1 representing the value of the SPX index
at time T ′1. If T ′1 is two days after T1, we consider the primal portfolios

u1(s′1)+uV (v)+u2(s2)+∆S(s1, v)(s′1 − s1)+∆′S(s1, v, s
′
1)(s2 − s′1)+∆L(s1, v)

(
L

(
s2

s1

)
− v2

)
and the dual risk-neutral probability measures V ∼ µV , S′1 ∼ µ1, S2 ∼ µ2,

Eµ
[
S′1|S1, V

]
= S1, Eµ

[
S2|S1, V, S

′
1

]
= S′1, Eµ

[
L

(
S2

S1

)∣∣∣∣S1, V

]
= V 2.

If T ′1 is five days before T1, the primal portfolios are

u1(s′1)+uV (v)+u2(s2)+∆′S(s′1)(s1 − s′1)+∆S(s′1, s1, v)(s2−s1)+∆L(s′1, s1, v)

(
L

(
s2

s1

)
− v2

)
and the dual risk-neutral probability measures V ∼ µV , S′1 ∼ µ1, S2 ∼ µ2,

Eµ
[
S1|S′1

]
= S′1, Eµ

[
S2|S′1, S1, V

]
= S1, Eµ

[
L

(
S2

S1

)∣∣∣∣S′1, S1, V

]
= V 2.

Approx: assume SPX options mature exactly at T1; maturity interpolation
of SPX data.
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Extension to the multi-maturity case
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Extension to the multi-maturity case

Assume that monthly SPX options and VIX futures maturities Ti perfectly
coincide and, for two consecutive months, are separated by exactly 30
days, Ti+1 − Ti = τ for all i ≥ 1.

Assume that for each i we are able to build a jointly calibrating model νi
using the Sinkhorn algorithm.

Here νi denotes the joint distribution of (Si, Vi, Si+1) where Si and Vi
denote the SPX and VIX values at Ti.

Then we can build a calibrated model on (Si, Vi)i≥1 as follows:
(S1, V1, S2) ∼ ν1; recursively we define the distribution of (Vi+1, Si+2)
given (S1, V1, S2, V2, . . . , Si, Vi, Si+1) as the conditional distribution of
(Vi+1, Si+2) given Si+1 under νi+1.

It is easy to check that the resulting model ν is arbitrage-free, consistent,
and calibrated to all the SPX and VIX monthly market smiles µSi and
µVi : for all i ≥ 1,

Si ∼ µSi , Vi ∼ µVi , Eν [Si+1|(Sj , Vj)1≤j≤i] = Si, Eν
[
L

(
Si+1

Si

)∣∣∣∣(Sj , Vj)1≤j≤i

]
= V 2

i .
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