Models of default times

Monique Jeanblanc joint work with Libo LI, and Yiqing LIM,
Liming YIN

LaMME, University Paris Saclay, UNSW; Jiao Tong Shanghai

Nicole's Birthday; Jussieu, 24th May 2019

U
s 2

Ll PARISSACLAY



Default time

e Given a measurable filtered probability space (2, F,F), a
default time is a positive random variable.

e The default process is Ay = 1;,;,. Denoting by A the
filtration generated by A, the filtration G = (G¢)¢>0 is the
smallest filtration containing F and A.

e We denote by AP (resp. A°) the dual F-predictable (resp.
optional) projection of A. We denote by J° (resp. JP) the
set of jump times of A° (resp. AP).
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e We denote by AP (resp. A°) the dual F-predictable (resp.
optional) projection of A. We denote by J° (resp. JP) the
set of jump times of A° (resp. AP).

e We denote by A the set of F-stopping times ¢ such that
P(r =49) > 0. Then, A= 7° and JP is the subset of A
made of predictable stopping times. In particular, 7 avoids F
stopping times if and only if A° is continuous.

e The process Z defined as Z; = P(7 > t|F;), called the Azéma
supermartingale admits a Doob-Meyer decomposition
Z=M— AP
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Intensity process

e The compensator of A or the intensity process of 7 is the
increasing G-predictable process A such that A—Ais a

. . . g
G-martingale, given by Ay = OMT Z‘S-

e In case where Z > 0, the process Z admits a unique
multiplicative decomposition Z = Ne~" where N is a local
F-martingale and I an increasing [F-predictable process. If I is
continuous, the intensity process is 7.

e |t follows that the intensity process does not contain full
information about Z.

23



Simple Defaultable claims

e Payment at maturity and recovery at hit.
¢:= YT1{7'>T} + Crl{rgT}

where Y7 € F1 and C is an F-predictable process. On has

EC|Ge] = Z 'E[Yr Zr + /( GG Pl + sy
t, T

e In the case where C is F-optional, then one has to replace AP
with A in the above formula.
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A second Azéma supermartingale

e The supermartingale Z does not contain full information
about A°: it is not possible to recover A° from Z.

e The second Azéma supermartingale is
Zy =P(r > t|Fy).

This supermartingale is ladlag and admits a unique
Doob-Meyer-Mertens decomposition Z = m — A° where m is
an F-martingale.

e The processes Z, Z A°, AP and A play an important role.
Note that Z; = E[AS, — AP|F:] and Z; = E[AS, — A_|F].
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Revisiting Cox's model
Let K be an increasing [F-adapted process with Ko = 0 and

T =inf{t : Ky > ©}

where © is an exponential r.v. independent from F. Then F is
immersed in G.
Let J(K) the set of jump times of K, then A = J(K).

e If K is continuous, one has
Z=eK=Z A=AP=1-27Z A=K,
e If K is predictable and continuous on right,
Z=e R AP=1-Z A=K =) (e2F-1)
e If K is continuous on right,

Z=eK Z=eK Ao=1—¢K

)
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e |f K is continuous on left, one has

va:eiK,Z:Z_;'_.

e Therefore, on can construct default times with a given set A.

Jiao and Li, Gehmlich and Schmidt have produced models
where A is not empty

e Any random time admits a unique decomposition as £ A ¢
where £ avoids stopping times and 4 is thin and £ V 9 = co.
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e Another characteristic is the conditional cumulative
distribution
Fi(u) =P(r < u|Fy).

e It is known that if L(u) is a family of martingales, increasing
w.r.t. u, valued in [0, 1] then, one can construct on an
extended probability space a random time 7 (in fact the
identity) and a probability Q such that

* Vt >0, Qr, =Plx,
o Q7 < u|F:) = Le(v).
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Density process

e The conditional law admits a density when
E[f(7)|Fe] = [5° f(u)pe(u)v(du) where v is the law of 7.
Note that p(u) is a family of nonnegative martingales and that

Fu(u) = P(r < u|Fy) = /Oupt(Q)V(dQ)

defines a family of martingales, valued in [0, 1], increasing
w.r.t. u.

e a family of density is a family of nonnegative martingales p(u)
such that for any t, [ pe(u)n(du) = 1.

o Very few examples are known in the literature.
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Density process

The density process is necessary in the two following cases

e Pricing of defaultable claims with payment at maturity:
assume that the payoff, done at time T is of the from

C=f(r, Y7).
ZflE[/(t (Y pr(d)| 7.

e Optimisation problems. In that case, one needs the
decomposition of ' martingales into G martingales which is

- tAT
ntXt = Xt+/
0

t

X, mE / d(X, p())F 10

s— tnr Ps—(T)

where X is a G-local martingale.
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Construction of a random time from a [0, 1] valued
supermartingale

Assume that Z is a continuous supermartingale valued in |0, 1[ with

multiplicative decomposition Z = Ne~" where A is continuous.
e We set, for u < t,

F(w) = a-z)en - [ 12 ant.

and for t < u

Fi(u) = E[Fy(u)|F] = E[1 — Z,| F¢] .

e The family F(u) is a family of martingales, valued in (0, 1],
increasing w.r.t. u.
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e Note that, for u < t,

_Ft(u)
1-27;

dFt(U) = th
where M is the martingale part in the Doob-Meyer
decomposition of Z;

e Other solutions: let Y be any continuous local martingale and
f be any bounded Lipschitz function with f(0) = 0, then a
family F(u) is given by

dFi(u) = —Ft(u)<
Fu(u) = 1-2,

dM; + F(Fe(u) — 1+ Z)dY,
1-Z
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More generally, for Z valued in |0, 1[, the family F(u) defined as

1
dFt(U) = —Ft,(u)l_ipztd/\//t, fort > u
Fu(uy = 1-2,

Fe(u) = E[1— Z,|F], foru>t

is a family of conditional laws. One can show that

where PZ is the predictable projection of Z and AP:€ is the
continuous part of AP.
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Construction of densities

e If F(u) is differentiable w.r.t. u, we obtain the conditional
density of 7.

e For example, in the previous case with A; = fot Asds

Fe(u) =(1— Z;) exp {— /ut 1 fszs)\sds}

we obtain that, for t > u

Z,
gi(u) = Ft(u)1 — Zu)\u
and
d()—i)\dF()— (u) L dMm
gt\u 1_Zuu tU—gtul_Zt t
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Construction of supermartingales valued in [0, 1]

e Starting from dual projections: If K is an F-predictable
increasing process such that G; := E[Ks — K¢|F:] < 1, then
G is a supermartingale valued in [0,1] and is the Azéma
supermartingale of a random time, and K will be the dual
predictable projection of A.

e Starting from dual projections: If K is an F-optional
increasing process such that gt = E[Kw — Ki—|Ft] <1, then
G is a supermartingale valued in [0,1] and K will be the dual
optional projection of A
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e Starting with intensity rate: Let B be a Brownian motion.
The solution of

th — *)\thdt + tht(l - Gt)dBt, G() — 1

where XA > 0 and b are two bounded optional processes is a
supermartingale valued in [0,1] and X is the intensity rate of
the associated random times. The conditional density of 7 is,
fort > u

e For t < u, if X is deterministic, and setting Ay = fot A(s)ds
and N; = G,eMN®)

E[Gy|Fe] = e MIE[N,|Fe] = Nee MY

so that g¢(u) = A(u)e MUN,.
If follows that

N,
ge(v) = Mu)e MIN ey + A(u)e_A(U)Tyfl{t>u}

where dl/t = —bteiA(t)l/tNtdBt.
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e For I' a continuous increasing IF adapted process
th = —thrt + tht(]- - Gt)dBt, G() - ].

is a supermartingale valued in [0,1]. This is in particular the
case for last passage times, where I involves a local time, or
when G = Y A1 for a positive supermartingale Y.
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Thank you for your attention
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