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Default time

• Given a measurable filtered probability space (Ω,F ,F), a
default time is a positive random variable.

• The default process is At = 1{τ≤t}. Denoting by A the
filtration generated by A, the filtration G = (Gt)t≥0 is the
smallest filtration containing F and A.

• We denote by Ap (resp. Ao) the dual F-predictable (resp.
optional) projection of A. We denote by J o (resp. J p) the
set of jump times of Ao (resp. Ap).
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• We denote by Ap (resp. Ao) the dual F-predictable (resp.
optional) projection of A. We denote by J o (resp. J p) the
set of jump times of Ao (resp. Ap).

• We denote by A the set of F-stopping times ϑ such that
P(τ = ϑ) > 0. Then, A = J o and J p is the subset of A
made of predictable stopping times. In particular, τ avoids F
stopping times if and only if Ao is continuous.

• The process Z defined as Zt = P(τ > t|Ft), called the Azéma
supermartingale admits a Doob-Meyer decomposition
Z = M − Ap.
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Intensity process

• The compensator of A or the intensity process of τ is the
increasing G-predictable process Λ such that A− Λ is a
G-martingale, given by Λt =

∫ t∧τ
0

dAp
s

Zs−
.

• In case where Z > 0, the process Z admits a unique
multiplicative decomposition Z = Ne−Γ where N is a local
F-martingale and Γ an increasing F-predictable process. If Γ is
continuous, the intensity process is Γτ .

• It follows that the intensity process does not contain full
information about Z .
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Simple Defaultable claims

• Payment at maturity and recovery at hit.

ζ := YT1{τ>T} + Cτ1{τ≤T}

where YT ∈ FT and C is an F-predictable process. On has

E[ζ | Gt ] = Z−1
t E[YTZT +

∫
(t,T ]

CudA
p
u | Ft ]1{τ>t}+Cτ1{τ≤t}

• In the case where C is F-optional, then one has to replace Ap

with Ao in the above formula.
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A second Azéma supermartingale

• The supermartingale Z does not contain full information
about Ao : it is not possible to recover Ao from Z .

• The second Azéma supermartingale is

Z̃t := P(τ ≥ t|Ft) .

This supermartingale is làdlàg and admits a unique
Doob-Meyer-Mertens decomposition Z̃ = m − Ao

− where m is
an F-martingale.

• The processes Z , Z̃ , Ao ,Ap and Λ play an important role.
Note that Zt = E[Ap

∞ − Ap
t |Ft ] and Z̃t = E[Ao

∞ − Ao
t−|Ft ].
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Revisiting Cox’s model
Let K be an increasing F-adapted process with K0 = 0 and

τ = inf{t : Kt ≥ Θ}

where Θ is an exponential r.v. independent from F. Then F is
immersed in G.
Let J (K ) the set of jump times of K , then A = J (K ).

• If K is continuous, one has

Z = e−K = Z̃ , Ao = Ap = 1− Z , Λ = K ,

• If K is predictable and continuous on right,

Z = e−K , Ap = 1− Z , Λ = K− −
∑

(e−∆K − 1)

• If K is continuous on right,

Z = e−K , Z̃ = e−K− , Ao = 1− e−K ,
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• If K is continuous on left, one has

Z̃ = e−K , Z = Z̃+ .

• Therefore, on can construct default times with a given set A.
Jiao and Li, Gehmlich and Schmidt have produced models
where A is not empty

• Any random time admits a unique decomposition as ξ ∧ ϑ
where ξ avoids stopping times and ϑ is thin and ξ ∨ ϑ =∞.
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• Another characteristic is the conditional cumulative
distribution

Ft(u) = P(τ ≤ u|Ft) .

• It is known that if L(u) is a family of martingales, increasing
w.r.t. u, valued in [0, 1] then, one can construct on an
extended probability space a random time τ (in fact the
identity) and a probability Q such that

• ∀t ≥ 0, Q|Ft = P|Ft

• Q(τ ≤ u|Ft) = Lt(u).
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Density process

• The conditional law admits a density when
E[f (τ)|Ft ] =

∫∞
0 f (u)pt(u)ν(du) where ν is the law of τ .

Note that p(u) is a family of nonnegative martingales and that

Ft(u) = P(τ ≤ u|Ft) =

∫ u

0
pt(θ)ν(dθ)

defines a family of martingales, valued in [0, 1], increasing
w.r.t. u.

• a family of density is a family of nonnegative martingales p(u)
such that for any t,

∫∞
0 pt(u)η(du) = 1.

• Very few examples are known in the literature.
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Density process

The density process is necessary in the two following cases

• Pricing of defaultable claims with payment at maturity:
assume that the payoff, done at time T is of the from
ζ = f (τ,YT ).

Z−1
t E

[ ∫
(t,T ]

f (u,YT ) pT (du) | Ft

]
.

• Optimisation problems. In that case, one needs the
decomposition of F martingales into G martingales which is

ntXt = X̂t+

∫ t∧τ

0

1

Zs−
d〈X ,m〉Fs +

∫ t

t∧τ

1

ps−(τ)
d〈X , p(u)〉Fs |u=τ ,

where X̂ is a G-local martingale.
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Construction of a random time from a [0, 1] valued
supermartingale

Assume that Z is a continuous supermartingale valued in ]0, 1[ with
multiplicative decomposition Z = Ne−Λ where Λ is continuous.

• We set, for u < t,

Ft(u) = (1− Zt) exp

{
−
∫ t

u

Zs

1− Zs
dΛs

}
,

and for t ≤ u

Ft(u) = E[Fu(u)|Ft ] = E[1− Zu|Ft ] .

• The family F (u) is a family of martingales, valued in (0, 1],
increasing w.r.t. u.
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• Note that, for u < t,

dFt(u) = − Ft(u)

1− Zt
dMt

where M is the martingale part in the Doob-Meyer
decomposition of Z ;

• Other solutions: let Y be any continuous local martingale and
f be any bounded Lipschitz function with f (0) = 0, then a
family F (u) is given by

dFt(u) = −Ft(u)

(
1

1− Zt
dMt + f

(
Ft(u)− 1 + Zt

)
dYt

)
Fu(u) = 1− Zu
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More generally, for Z valued in ]0, 1[, the family F (u) defined as

dFt(u) = −Ft−(u)
1

1− pZt
dMt , for t > u

Fu(u) = 1− Zu

Ft(u) = E[1− Zu|Ft ], for u > t

is a family of conditional laws. One can show that

Ft(u) = (1− Zt) exp(−
∫

(u,t]

dAp,c
s

1− pZs

) ∏
u<s≤t

(
1− ∆Ap

s

1− pZs

)
where pZ is the predictable projection of Z and Ap,c is the
continuous part of Ap.
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Construction of densities

• If F (u) is differentiable w.r.t. u, we obtain the conditional
density of τ .

• For example, in the previous case with Λt =
∫ t

0 λsds

Ft(u) = (1− Zt) exp

{
−
∫ t

u

Zs

1− Zs
λsds

}
we obtain that, for t > u

gt(u) = Ft(u)
Zu

1− Zu
λu

and

dgt(u) =
Zu

1− Zu
λudFt(u) = gt(u)

1

1− Zt
dMt
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Construction of supermartingales valued in [0, 1]

• Starting from dual projections: If K is an F-predictable
increasing process such that Gt := E[K∞ − Kt |Ft ] ≤ 1, then
G is a supermartingale valued in [0, 1] and is the Azéma
supermartingale of a random time, and K will be the dual
predictable projection of A.

• Starting from dual projections: If K is an F-optional
increasing process such that G̃t := E[K∞ − Kt−|Ft ] ≤ 1, then
G̃ is a supermartingale valued in [0, 1] and K will be the dual
optional projection of A
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• Starting with intensity rate: Let B be a Brownian motion.
The solution of

dGt = −λtGtdt + btGt(1− Gt)dBt , G0 = 1

where λ ≥ 0 and b are two bounded optional processes is a
supermartingale valued in [0, 1] and λ is the intensity rate of
the associated random times. The conditional density of τ is,
for t > u

• For t < u, if λ is deterministic, and setting Λt =
∫ t

0 λ(s)ds

and Nt = Gte
Λ(t)

E[Gu|Ft ] = e−Λ(u)E[Nu|Ft ] = Nte
−Λ(u)

so that gt(u) = λ(u)e−Λ(u)Nt .
If follows that

gt(u) = λ(u)e−Λ(u)Nt1{t≤u} + λ(u)e−Λ(u)Nu

νu
νt1{t>u}

where dνt = −bte−Λ(t)νtNtdBt .
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• For Γ a continuous increasing F adapted process

dGt = −GtdΓt + btGt(1− Gt)dBt , G0 = 1

is a supermartingale valued in [0, 1]. This is in particular the
case for last passage times, where Γ involves a local time, or
when G = Y ∧ 1 for a positive supermartingale Y .
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