Models of default times

Monique Jeanblanc joint work with Libo LI, and Yiqing LIM, Liming YIN

LaMME, University Paris Saclay, UNSW; Jiao Tong Shanghai

Nicole's Birthday; Jussieu, 24th May 2019

Default time

- Given a measurable filtered probability space $(\Omega, \mathcal{F}, \mathbb{F})$, a default time is a positive random variable.
- The default process is $A_t = \mathbf{1}_{\{\tau \leq t\}}$. Denoting by \mathbb{A} the filtration generated by A, the filtration $\mathbb{G} = (\mathcal{G}_t)_{t \geq 0}$ is the smallest filtration containing \mathbb{F} and \mathbb{A} .
- We denote by A^p (resp. A^o) the dual \mathbb{F} -predictable (resp. optional) projection of A. We denote by \mathcal{J}^o (resp. \mathcal{J}^p) the set of jump times of A^o (resp. A^p).

- We denote by A^p (resp. A^o) the dual \mathbb{F} -predictable (resp. optional) projection of A. We denote by \mathcal{J}^o (resp. \mathcal{J}^p) the set of jump times of A^o (resp. A^p).
- We denote by $\mathcal A$ the set of $\mathbb F$ -stopping times ϑ such that $\mathbb P(\tau=\vartheta)>0$. Then, $\mathcal A=\mathcal J^o$ and $\mathcal J^p$ is the subset of $\mathcal A$ made of predictable stopping times. In particular, τ avoids $\mathbb F$ stopping times if and only if A^o is continuous.
- The process Z defined as $Z_t = \mathbb{P}(\tau > t | \mathcal{F}_t)$, called the Azéma supermartingale admits a Doob-Meyer decomposition $Z = M A^p$.

Intensity process

- The compensator of A or the **intensity process** of τ is the increasing \mathbb{G} -predictable process Λ such that $A-\Lambda$ is a \mathbb{G} -martingale, given by $\Lambda_t = \int_0^{t\wedge \tau} \frac{dA_s^\rho}{Z_{s-}}$.
- In case where Z > 0, the process Z admits a unique multiplicative decomposition Z = Ne^{-Γ} where N is a local F-martingale and Γ an increasing F-predictable process. If Γ is continuous, the intensity process is Γ^τ.
- It follows that the intensity process does not contain full information about Z.

Simple Defaultable claims

Payment at maturity and recovery at hit.

$$\zeta := Y_T \mathbf{1}_{\{\tau > T\}} + C_\tau \mathbf{1}_{\{\tau \le T\}}$$

where $Y_T \in \mathcal{F}_T$ and C is an \mathbb{F} -predictable process. On has

$$\mathbb{E}[\zeta \mid \mathcal{G}_t] = Z_t^{-1} \mathbb{E}[Y_T Z_T + \int_{(t,T]} C_u dA_u^p \mid \mathcal{F}_t] \mathbf{1}_{\{\tau > t\}} + C_\tau \mathbf{1}_{\{\tau \le t\}}$$

In the case where C is F-optional, then one has to replace A^p with A^o in the above formula.

A second Azéma supermartingale

- The supermartingale Z does not contain full information about A^o: it is not possible to recover A^o from Z.
- The second Azéma supermartingale is

$$\widetilde{Z}_t := \mathbb{P}(\tau \geq t | \mathcal{F}_t)$$
.

This supermartingale is làdlàg and admits a unique Doob-Meyer-Mertens decomposition $\widetilde{Z}=m-A_-^o$ where m is an \mathbb{F} -martingale.

• The processes $Z, \widetilde{Z}, A^o, A^p$ and Λ play an important role. Note that $Z_t = \mathbb{E}[A^p_{\infty} - A^p_t | \mathcal{F}_t]$ and $\widetilde{Z}_t = \mathbb{E}[A^o_{\infty} - A^o_{t-} | \mathcal{F}_t]$.

Revisiting Cox's model

Let K be an increasing \mathbb{F} -adapted process with $K_0=0$ and

$$\tau = \inf\{t : K_t \ge \Theta\}$$

where Θ is an exponential r.v. independent from \mathbb{F} . Then \mathbb{F} is immersed in \mathbb{G} .

Let $\mathcal{J}(K)$ the set of jump times of K, then $\mathcal{A} = \mathcal{J}(K)$.

If K is continuous, one has

$$Z = e^{-K} = \widetilde{Z}, A^o = A^p = 1 - Z, \Lambda = K,$$

If K is predictable and continuous on right,

$$Z = e^{-K}, A^p = 1 - Z, \Lambda = K_- - \sum (e^{-\Delta K} - 1)$$

• If K is continuous on right,

$$Z = e^{-K}, \ \widetilde{Z} = e^{-K_{-}}, \ A^{o} = 1 - e^{-K},$$

If K is continuous on left, one has

$$\widetilde{Z} = e^{-K}, \ Z = \widetilde{Z}_+ \ .$$

- Therefore, on can construct default times with a given set \mathcal{A} . Jiao and Li, Gehmlich and Schmidt have produced models where \mathcal{A} is not empty
- Any random time admits a unique decomposition as $\xi \wedge \vartheta$ where ξ avoids stopping times and ϑ is thin and $\xi \vee \vartheta = \infty$.

Another characteristic is the conditional cumulative distribution

$$F_t(u) = \mathbb{P}(\tau \leq u | \mathcal{F}_t)$$
.

- It is known that if L(u) is a family of martingales, increasing w.r.t. u, valued in [0,1] then, one can construct on an extended probability space a random time τ (in fact the identity) and a probability $\mathbb Q$ such that
 - $\forall t \geq 0, \ \mathbb{Q}|_{\mathcal{F}_t} = \mathbb{P}|_{\mathcal{F}_t}$
 - $\mathbb{Q}(\tau \leq u|\mathcal{F}_t) = L_t(u)$.

Density process

• The conditional law admits a density when $\mathbb{E}[f(\tau)|\mathcal{F}_t] = \int_0^\infty f(u)p_t(u)\nu(du)$ where ν is the law of τ . Note that p(u) is a family of nonnegative martingales and that

$$F_t(u) = \mathbb{P}(\tau \leq u | \mathcal{F}_t) = \int_0^u p_t(\theta) \nu(d\theta)$$

defines a family of martingales, valued in [0,1], increasing w.r.t. u.

- a family of density is a family of nonnegative martingales p(u) such that for any t, $\int_0^\infty p_t(u)\eta(du) = 1$.
- Very few examples are known in the literature.

Density process

The density process is necessary in the two following cases

• Pricing of defaultable claims with payment at maturity: assume that the payoff, done at time T is of the from $\zeta = f(\tau, Y_T)$.

$$Z_t^{-1}\mathbb{E}\Big[\int_{(t,T]}f(u,Y_T)\,p_T(du)\,|\,\mathcal{F}_t\Big]\,.$$

• Optimisation problems. In that case, one needs the decomposition of $\mathbb F$ martingales into $\mathbb G$ martingales which is

$$ntX_t = \widehat{X}_t + \int_0^{t \wedge \tau} \frac{1}{Z_{s-}} d\langle X, m \rangle_s^{\mathbb{F}} + \int_{t \wedge \tau}^t \frac{1}{\rho_{s-}(\tau)} d\langle X, p(u) \rangle_{s \mid u = \tau}^{\mathbb{F}},$$

where \widehat{X} is a \mathbb{G} -local martingale.

Construction of a random time from a [0, 1] valued supermartingale

Assume that Z is a continuous supermartingale valued in]0,1[with multiplicative decomposition $Z=Ne^{-\Lambda}$ where Λ is continuous.

• We set, for u < t,

$$F_t(u) = (1 - Z_t) \exp \left\{ - \int_u^t \frac{Z_s}{1 - Z_s} d\Lambda_s \right\} ,$$

and for t < u

$$F_t(u) = \mathbb{E}[F_u(u)|\mathcal{F}_t] = \mathbb{E}[1 - Z_u|\mathcal{F}_t].$$

• The family F(u) is a family of martingales, valued in (0,1], increasing w.r.t. u.

Note that, for u < t,

$$dF_t(u) = -\frac{F_t(u)}{1 - Z_t} dM_t$$

where M is the martingale part in the Doob-Meyer decomposition of Z;

• Other solutions: let Y be any continuous local martingale and f be any bounded Lipschitz function with f(0) = 0, then a family F(u) is given by

$$dF_t(u) = -F_t(u) \left(\frac{1}{1 - Z_t} dM_t + f(F_t(u) - 1 + Z_t) dY_t \right)$$

$$F_u(u) = 1 - Z_u$$

More generally, for Z valued in]0,1[, the family F(u) defined as

$$dF_t(u) = -F_{t-}(u)\frac{1}{1 - {}^{p}Z_t}dM_t, \text{ for } t > u$$

$$F_u(u) = 1 - Z_u$$

$$F_t(u) = \mathbb{E}[1 - Z_u|\mathcal{F}_t], \text{ for } u > t$$

is a family of conditional laws. One can show that

$$F_t(u) = (1 - Z_t) \exp(-\int_{(u,t]} \frac{dA_s^{p,c}}{1 - {}^pZ_s}) \prod_{u < s < t} \left(1 - \frac{\Delta A_s^p}{1 - {}^pZ_s}\right)$$

where ${}^{p}Z$ is the predictable projection of Z and $A^{p,c}$ is the continuous part of A^{p} .

Construction of densities

- If F(u) is differentiable w.r.t. u, we obtain the conditional density of τ .
- For example, in the previous case with $\Lambda_t = \int_0^t \lambda_s ds$

$$F_t(u) = (1 - Z_t) \exp\left\{-\int_u^t \frac{Z_s}{1 - Z_s} \lambda_s ds\right\}$$

we obtain that, for t > u

$$g_t(u) = F_t(u) \frac{Z_u}{1 - Z_u} \lambda_u$$

and

$$dg_t(u) = \frac{Z_u}{1 - Z_u} \lambda_u dF_t(u) = g_t(u) \frac{1}{1 - Z_t} dM_t$$

Construction of supermartingales valued in [0,1]

- Starting from dual projections: If K is an \mathbb{F} -predictable increasing process such that $G_t := \mathbb{E}[K_\infty K_t | \mathcal{F}_t] \leq 1$, then G is a supermartingale valued in [0,1] and is the Azéma supermartingale of a random time, and K will be the dual predictable projection of A.
- Starting from dual projections: If K is an \mathbb{F} -optional increasing process such that $\widetilde{G}_t := \mathbb{E}[K_\infty K_{t-}|\mathcal{F}_t] \leq 1$, then \widetilde{G} is a supermartingale valued in [0,1] and K will be the dual optional projection of A

Starting with intensity rate: Let B be a Brownian motion.
 The solution of

$$dG_t = -\lambda_t G_t dt + b_t G_t (1 - G_t) dB_t, G_0 = 1$$

where $\lambda \geq 0$ and b are two bounded optional processes is a supermartingale valued in [0,1] and λ is the intensity rate of the associated random times. The conditional density of τ is, for t>u

• For t < u, if λ is deterministic, and setting $\Lambda_t = \int_0^t \lambda(s) ds$ and $N_t = G_t e^{\Lambda(t)}$

$$\mathbb{E}[G_u|\mathcal{F}_t] = e^{-\Lambda(u)}\mathbb{E}[N_u|\mathcal{F}_t] = N_t e^{-\Lambda(u)}$$

so that $g_t(u) = \lambda(u)e^{-\Lambda(u)}N_t$. If follows that

$$g_t(u) = \lambda(u)e^{-\Lambda(u)}N_t\mathbf{1}_{\{t \leq u\}} + \lambda(u)e^{-\Lambda(u)}\frac{N_u}{\nu_u}\nu_t\mathbf{1}_{\{t > u\}}$$

where $d\nu_t = -b_t e^{-\Lambda(t)} \nu_t N_t dB_t$.

• For Γ a continuous increasing $\mathbb F$ adapted process

$$dG_t = -G_t d\Gamma_t + b_t G_t (1 - G_t) dB_t, G_0 = 1$$

is a supermartingale valued in [0,1]. This is in particular the case for last passage times, where Γ involves a local time, or when $G=Y\wedge 1$ for a positive supermartingale Y.

References: Generalities

- Aksamit, A and Jeanblanc, M.(2017) *Enlargement of Filtration with Finance in View.* SpringerBriefs in Quantitative Finance, Springer, (2017).
- Jeulin, T. (1980). Semi-martingales et grossissement d'une filtration. Lecture Notes in Math. 833, Springer, Berlin.
- Mertens, J.-F. (1972). Théorie des processus stochastiques généraux : applications aux surmartingales, Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, **22**, 45-72.

References: Construction of default times

- Bélanger, A. and Shreve, S.E. and Wong, D., A unified model for credit derivative", Math. Finance, 14, 317-350, 2004
- El Karoui, N. and Jeanblanc, M. and Jiao, Y., What happens after a default: the conditional density approach, Stochastic Processes and their Appl., 2010, 120, 7, 1011-1032
- Gapeev, P., Jeanblanc, M., Li, L. and Rutkowski, M. (2010) Constructing random times with given survival processes and applications to valuation of credit derivatives. In:

 Contemporary Quantitative Finance, Springer, pp. 255–280.
- Jeanblanc, M. and Song, S., Explicit Model of Default Time with given Survival Probability, SPA, 121, 1678-170, 2011
- Jeanblanc, M. and Song, S. (2011). Random times with given survival probability and their F-martingale decomposition formula. *SPA* **121** 1389–1410.
- Jeanblanc, M. and Li, L. (2019) Modeling of Default Times,

Other related references

- Jiao, Y. and Li, S. (2015) Generalized density approach in progressive enlargement of filtrations, Electronic Journal of Probability, 20
- Gehmlich, F. and Schmidt, Th. (2016) Dynamic Defaultable Term Structure Modeling Beyond the Intensity Paradigm, Mathematical Finance, **28**, 1, 211-239
- Kardaras, C.: On the stochastic behaviour of optional processes up to random times, Annals of Applied Probability, 25, 2 (2015), pp. 429–464.

Sofia Kovalevskaïa ©Library of Congress Ada Lovelace

Thank you for your attention