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What are bacteria?
• Tiny unicellular organisms

Kevin D. Young Microbiol. Mol. Biol. Rev. 2006; 
doi:10.1128/MMBR.00001-06

Population size: 
Large!

In the human body:1013



When bacteria grow in our body 
they can cause infection

Antibiotics 
only kill 
growing 
bacteria





To understand antibiotic resistance we 
need to understand how bacteria grow



How do bacteria grow? An old 
question revisited

J. Monod (1949) Growth of bacterial cultures. Annual Reviews in Microbiology 3:371.

J. Monod

This cell does not grow time



Measuring bacterial growth

30 Expériences de biologie

FIGURE 3.5: Courbe de croissance

FIGURE 3.6: Régression linéaire

Ce résultat est cohérent avec la composition des milieux que nous avons utilisés. En effet, le
milieu B ne contient pas d’acides aminés ce qui ralentit le développement des cellules et entraîne
un temps de doublement plus grand.

Actual growth curve (done by Guillaume!)



Observations
• bacteria stop growing when the cell density is high 

(quiescent)
• They resume growth after a certain (random) 

amount of time when diluted in fresh growth 
medium (lag-time)
• Irrespective of cell density some bacteria stop 

growing for a while: they become persistent (AND 
antibiotic tolerant)

Can we build a model that predicts the growth curve 
given the cell to cell variability?

Can we use this model to understand the antibiotics 
action on the population?



The framework The stochastic model

Our aim

• Propose a model that explains the observed curves of population growth.

• Understand the latency phase and the "S" curve without resource

constraints.

• Model the quiescence of bacteria.

• Interpret the observations in terms of regulation of growth rates according

to the number of bacteria present in the environment.



The framework The stochastic model

A model with 3 states based on individuals

Active cells wich divide.

Quiescent cells which stop to divide in function of the population state.

Persistent cells which also stop to divide, but at random and during a random

time, without interaction with the population.

The population dynamics is described by the Markov process

(N (t), t � 0) 2 D(R+,R3
+), where

N (t) = (Np(t),Nq(t),Na(t))

gives the number of cells in each state.

We denote by N(t) the total number of cells: N(t) = Np(t) + Nq(t) + Na(t).



The framework The stochastic model

Meriem’s Information:

• The mean of the persistence time is 5 h.

• The cells divide every 30 mn in average when the number of cells is small.

• If the cells number attains some threshold bS, the birth rate is divided by 2.

• The active cells don’t divide anymore if their number attains a certain level.

• An active cell becomes quiescent when there are many cells in the medium.

• A quiescent cell becomes active when there is a few number of cells in the

medium.

• At the initial time of each biological experiments, there are approximatively

one persistent cell, 10 000 quiescent cells and no active cell.



The framework The stochastic model

The Transitions

Births:
In a population of size N, the active cells divide at rate bµ(N) given by

bµ(N) = b
✓

1 �
arctan( A N

bS
� �) + arctan(�)

⇡
2
+ arctan(�)

◆
,

where �, A and bS are positive parameters, � and A being chosen such that

bµ(bS) = b/2.

Dependence on �

For Escherichia coli, b = 1

30
in the growing phase.

Deaths: Each active cell dies at rate d .



The framework The stochastic model

Transfer

• A persistent cell becomes active at rate rp : rp =
1

300
.

• An active cell becomes persistent at rate ⌧p > 0.

• A quiescent cell becomes active at rate rq(Na) =
b↵

b� + Na
.

• An active cell becomes quiescent at rate ⌧q N.

⌧p, ⌧q , b↵, b� are positive parameters.



The framework The stochastic model

Transitions in the population (Np,Nq ,Na), with

N = Np + Nq + Na.

• (Np,Nq ,Na) �! (Np � 1,Nq ,Na + 1) at rate rp Np,

• (Np,Nq ,Na) �! (Np + 1,Nq ,Na � 1) at rate ⌧p Na,

• (Np,Nq ,Na) �! (Np,Nq � 1,Na + 1) at rate rq(Na)Nq = b↵
b�+Na

Nq ,

• (Np,Nq ,Na) �! (Np,Nq + 1,Na � 1) at rate ⌧q N Na,

• (Np,Nq ,Na) �! (Np,Nq ,Na + 1) at rate bµ(N) Na,

• (Np,Nq ,Na) �! (Np,Nq ,Na � 1) at rate d Na.



The framework The stochastic model

Simulations for b↵ = 0.5, b� = 2500, ⌧p = 10
�4, ⌧q = 5x10

�7
, bS = 150000,

� = 200, K = 10
4
.

Total number of cells

Proportion of active cells and quiescent cells.



The framework The stochastic model

Influence of b↵ on the lag

Total number of cells in function of b↵: smaller is b↵, longer is the lag.



The framework The stochastic model

Large population

Initial condition: N (0) = (1, 10
4 � 1, 0).

We have a size scale of 10
4
: large population parameter.

We introduce a scale parameter K .

The general model: initial condition (1,K , 0).

We look for an approximation for large K .

Let us set

X K =
NK

K
with NK(0) = (1,K , 0)

bS replaced by S K =) bµ replaced by µ.

b↵ and b� replaced by ↵K and � K .



The framework The stochastic model

The limiting system

Proposition: (Kurtz 1971)

Let us fix T > 0. When K ! 1 , the process (X K
t )tT converges in

probability to the solution (yt)tT of the system:

dy1

dt
=⌧p y3 � rp y1;

dy2

dt
=⌧q(y1 + y2 + y3) y3 �

↵
� + y3

y2;

dy3

dt
=rp y1 +

↵
� + y3

y2 + µ(y1 + y2 + y3) y3 �
�
⌧p + ⌧q(y1 + y2 + y3) + d

�
y3.

avec y(0) = (0, 1, 0).

Proof: argument of compactness-identification-uniqueness.



The framework The stochastic model

Study of the system

There is existence and uniqueness of the positive solution. In addition, the

solution is bounded and stays in the compact set [0, µ�1(d)]3.

There are two equilibria.

(0, 0, 0) is an unstable equilibrium.

The second equilibrium (repartition of the population in the stationary phase),

is

yeq =
�⌧p

rp
yeq

3
, µ�1(d)� (

⌧p

rp
+ 1)yeq

3
, yeq

3

�
,

with

yeq
3

=
↵

r⇣
4µ�1(d) ⌧q

↵ +
� ⌧q�

↵ + 1 +
⌧p
rp

�2
⌘
� ↵� ⌧q� � ⌧p

rp
↵

2⌧q
.

It’s a stable equilibrium, globally attractive.

Remark: the total size at equilibrium can be computed:

N⇤ = yeq
1

+ yeq
2

+ yeq
3

= µ�1(d).



The framework The stochastic model

Calibration of the model

First experiment: medium with glucose and amino-acids. The temperature

was cold and the division took a longer time than waited. (> 30mn).

Stochastic calibration method with an algorithm of mutation-selection.

We take K = 2x10
6
, � = 90, d = µ(N/K ).

We calibrate 6 parameters: (↵,�, ⌧p, ⌧q ,S, b) 2 [0, 1]4x [100, 1000]x [0, 1].



The framework The stochastic model

Second experiment: in a medium with glucose but without amino-acids: the

cells have to produce their amino acids and then, the division time is longer.

After calibration:

We note that ⌧q is larger and b is smaller (which gives a longer division time)

than in the previous experiment.



Conclusion so far
• We have model that can explain the growth curve 

taking into account single cell behavior
• What happens if there are antibiotics?



Initial simulations recapitulate 
(qualitatively) system behaviour
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Take home messages

• To understand antibiotics action we need 
quantitative single cell based models of bacterial 
growth
• Our model recapitulates the main features of the 

“growth curve”

• Antibiotic model : work in progress….


