Stochastic Persistence

Michel Benaim Neuchâtel University

Conference in honor of Nicole El Karoui, May 21-34, 2019

 An important issue in ecology is to find out under which conditions a group of interacting species plants, animals, viral particles - can coexist.

- An important issue in ecology is to find out under which conditions a group of interacting species plants, animals, viral particles - can coexist.
- Classical approach to these questions has been the development of **Deterministic Models of Interaction**

- An important issue in ecology is to find out under which conditions a group of interacting species plants, animals, viral particles - can coexist.
- Classical approach to these questions has been the development of **Deterministic Models of Interaction** ODEs,

- An important issue in ecology is to find out under which conditions a group of interacting species plants, animals, viral particles - can coexist.
- Classical approach to these questions has been the development of **Deterministic Models of Interaction** ODEs, PDEs,

- An important issue in ecology is to find out under which conditions a group of interacting species plants, animals, viral particles - can coexist.
- Classical approach to these questions has been the development of **Deterministic Models of Interaction** ODEs, PDEs, Difference equations, etc.

- An important issue in ecology is to find out under which conditions a group of interacting species plants, animals, viral particles - can coexist.
- Classical approach to these questions has been the development of **Deterministic Models of Interaction** ODEs, PDEs, Difference equations, etc.
 - ⇒ Mathematical theory of **Deterministic** Persistence

- An important issue in ecology is to find out under which conditions a group of interacting species plants, animals, viral particles - can coexist.
- Classical approach to these questions has been the development of **Deterministic Models of Interaction** ODEs, PDEs, Difference equations, etc.
 - ⇒ Mathematical theory of **Deterministic** Persistence
- The theory began in the late 1970s and developed rapidly with the help of the available tools from dynamical system theory.

• To take into account **environmental fluctuations** one need to consider **Stochastic Models of Interaction**

- To take into account **environmental fluctuations** one need to consider **Stochastic Models of Interaction**
 - ⇒ Mathematical theory of **stochastic** Persistence

The theory began to emerge with the work of Chesson, Ellner, and others in the 80s

- To take into account **environmental fluctuations** one need to consider **Stochastic Models of Interaction**
 - ⇒ Mathematical theory of **stochastic** Persistence

The theory began to emerge with the work of Chesson, Ellner, and others in the 80s but, from a "math perspective", is still in its infancy

- To take into account **environmental fluctuations** one need to consider **Stochastic Models of Interaction**
 - ⇒ Mathematical theory of **stochastic** Persistence

The theory began to emerge with the work of Chesson, Ellner, and others in the 80s but, from a "math perspective", is still in its infancy

Purpose of this talk: present some recent results on the subject

- To take into account **environmental fluctuations** one need to consider **Stochastic Models of Interaction**
 - ⇒ Mathematical theory of **stochastic** Persistence

The theory began to emerge with the work of Chesson, Ellner, and others in the 80s but, from a "math perspective", is still in its infancy

- To take into account environmental fluctuations one need to consider Stochastic Models of Interaction
 - ⇒ Mathematical theory of **stochastic** Persistence

The theory began to emerge with the work of Chesson, Ellner, and others in the 80s but, from a "math perspective", is still in its infancy

- Purpose of this talk: present some recent results on the subject

 ⇒ based on influential collaboration with

 Sebastian Schreiber (UC Davis) and Josef Hofbauer (Wien),

 ⇒ and recent works with

 Claude Lobry (Nice), Edouard Strickler (Neuchatel)
 - 4 D > 4 A > 4 B > 4 B > B 90 0

Outline

Examples

A glimpse of the Maths

Logistic Lotka Volterra Lajmanovich and Yorke

1 : Some motivating examples

- 1 : Some motivating examples
 - Verhulst

Verhulst model (1840)

$$\frac{dx}{dt} = x(a - bx)$$

 $x \ge 0$, abundance of the population,

a = intrinsic growth rate,

Verhulst model (1840)

$$\frac{dx}{dt} = x(a - bx)$$

- • $a < 0 \Rightarrow x(t) \rightarrow 0$: Extinction
- $ullet a>0\Rightarrow x(t) o\gamma:=rac{a}{b}$ Persistence

Verhulst model (1840)

$$\frac{dx}{dt} = x(a - bx)$$

- • $a < 0 \Rightarrow x(t) \rightarrow 0$: Extinction
- $ullet a>0\Rightarrow x(t) o\gamma:=rac{a}{b}$ Persistence

Ok but what does it mean if there is (stochastic) variability?

$$\frac{dx}{dt} = x(a - bx)$$

$$a \leftarrow a + \text{noise}$$

$$\frac{dx}{dt} = x(a - bx)$$

$$a \leftarrow a + \text{noise}$$

$$dx = x(a - bx)dt + x\sigma dB_t$$

$$a \leftarrow a + \text{noise}$$

$$dx = x(a - bx)dt + x\sigma dB_t (\text{not } \sqrt{\mathbf{x}}\sigma dB_t)$$

$$a \leftarrow a + \text{noise}$$

$$dx = x(a - bx)dt + x\sigma dB_t$$

- ullet Elementary one dimensional SDEs theory \leadsto
 - 0

$$a-rac{\sigma^2}{2}<0\Rightarrow x(t)\to 0$$

• Elementary one dimensional SDEs theory ↔

$$a-\frac{\sigma^2}{2}<0\Rightarrow x(t)\to 0$$

$$a - \frac{\sigma^2}{2} > 0 \Rightarrow \text{Law } (x(t)) \rightarrow \Gamma(1 - \sigma^2/2a, \sigma^2/2b)$$

- Elementary one dimensional SDEs theory ↔
 - 1

$$a-\frac{\sigma^2}{2}<0\Rightarrow x(t)\to 0$$

2

$$a-rac{\sigma^2}{2}>0 \Rightarrow ext{ Law }(x(t))
ightarrow \Gamma(\sigma^2/2a-1,\sigma^2/2b)$$

Looks like a sensible definition of Stochastic Extinction/Persistence

ullet Elementary one dimensional SDEs theory \leadsto

$$a-\frac{\sigma^2}{2}<0\Rightarrow x(t)\to 0$$

$$a-rac{\sigma^2}{2}>0 \Rightarrow ext{ Law }(x(t))
ightarrow \Gamma(\sigma^2/2a-1,\sigma^2/2b)$$

Looks like a sensible definition of Stochastic Extinction/Persistence

Ok, BUT what if the model is more complicated or the noise non gaussian?

- 1 : Some motivating examples
- Verhulst

1 : Some motivating examples

- Verhulst
- 2 Lotka-Volterra

Lotka Volterra (based on B & Lobry, Annals of Applied Prob 2016)

• 2 species **x** and **y** characterized by their **abundances** $x, y \ge 0$.

Lotka Volterra (based on B & Lobry, Annals of Applied Prob 2016)

- 2 species **x** and **y** characterized by their **abundances** $x, y \ge 0$.
- Lotka Volterra ODE

$$(\dot{x},\dot{y})=F_{\mathcal{E}}(x,y)$$

$$F_{\mathcal{E}}(x,y) = \begin{cases} \alpha x (1 - ax - by) \\ \beta y (1 - cx - dy) \end{cases}$$

Lotka Volterra (based on B & Lobry, Annals of Applied Prob 2016)

- 2 species **x** and **y** characterized by their **abundances** $x, y \ge 0$.
- Lotka Volterra ODE

$$(\dot{x},\dot{y})=F_{\mathcal{E}}(x,y)$$

$$F_{\mathcal{E}}(x,y) = \begin{cases} \alpha x (1 - ax - by) \\ \beta y (1 - cx - dy) \end{cases}$$

• $\mathcal{E} = (\alpha, a, b, \beta, c, d)$ is the *environment*:

$$\alpha$$
, a , b , β , c , $d > 0$

• Environment \mathcal{E} is said favorable to species \mathbf{x} if a < c and b < d.

- Environment \mathcal{E} is said favorable to species \mathbf{x} if a < c and b < d.
- \Rightarrow Extinction of y and Persistence of x.

Ok but what if the environment fluctuates?

Ok but what if the environment fluctuates?

i.e

$$(\dot{X},\dot{Y})=F_{\mathcal{E}_{u(t)}}(X,Y)$$

where

 $\bullet \mathcal{E}_0, \mathcal{E}_1$ are two favorable environments

Ok but what if the environment fluctuates?

i.e

$$(\dot{X},\dot{Y})=F_{\mathcal{E}_{u(t)}}(X,Y)$$

where

- $\bullet \mathcal{E}_0, \mathcal{E}_1$ are two favorable environments
- • $u(t) \in \{0,1\}$ is a jump process

Ok but what if the environment fluctuates?

i.e

$$(\dot{X},\dot{Y})=F_{\mathcal{E}_{u(t)}}(X,Y)$$

where

- $\bullet \mathcal{E}_0, \mathcal{E}_1$ are two favorable environments
- • $u(t) \in \{0,1\}$ is a jump process

$$0 o 1$$
 at rate λ_0

$$1 \rightarrow 0$$
 at rate λ_1 .

Figure: Phase portraits of $F_{\mathcal{E}_0}$ and $F_{\mathcal{E}_1}$

Figure: Phase portraits of $F_{\mathcal{E}_0}$ and $F_{\mathcal{E}_1}$

Different values of λ_0, λ_1 can lead to various behaviors...

Simulations

Figure: extinction of 2

Figure: Persistence

Figure: Persistence

Figure: Extinction of 1

Figure: Extinction of 1 or 2

- 1 : Some motivating examples
- Verhulst

1 : Some motivating examples

- Verhulst
- 2 Lotka-Volterra

1 : Some motivating examples

- Verhulst
- 2 Lotka-Volterra
- 3 Lajmanovich and Yorke

Lajmanovich and Yorke (based on B & Strickler Annals of Applied Prob 2019)

- d groups
- In each group each individual can be infected
- $0 \le x_i \le 1$ = proportion of infected individuals in group i.

Lajmanovich and Yorke (based on B & Strickler Annals of Applied Prob 2019)

- d groups
- In each group each individual can be infected
- $0 \le x_i \le 1$ = proportion of infected individuals in group i.
- Lajmanovich and Yorke ODE

$$\frac{dx_i}{dt} = (1 - x_i)(\sum_j C_{ij}x_j) - D_ix_i$$

Lajmanovich and Yorke (based on B & Strickler Annals of Applied Prob 2019)

- d groups
- In each group each individual can be infected
- $0 \le x_i \le 1$ = proportion of infected individuals in group i.
- Lajmanovich and Yorke ODE

$$\frac{dx_i}{dt} = (1 - x_i)(\sum_j C_{ij}x_j) - D_ix_i$$

- C_{ij} = rate of infection from group i to group j.
- D_i cure rate in group i

Suppose C irreducible

$$A = C - \operatorname{diag}(D)$$

 $\lambda(A) =$ largest real part of eigenvalues of A.

Suppose C irreducible

$$A = C - \mathsf{diag}(D)$$

 $\lambda(A) =$ largest real part of eigenvalues of A.

Theorem (Lajmanovich and Yorke 1976)

If $\lambda(A) \leq 0$, the disease free equilibrium 0 is a global attractor If $\lambda(A) > 0$ there exists another equilibrium $x^* >> 0$ and every non zero trajectory converges to x^*

• What if the environment fluctuates between two environments?

- What if the environment fluctuates between two environments?
- Example:

$$C^1 = \begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix}, \ D^1 = \begin{pmatrix} 2 \\ 2 \end{pmatrix},$$

and

$$C^2 = \begin{pmatrix} 2 & 0 \\ 4 & 2 \end{pmatrix}, \ D^2 = \begin{pmatrix} 3 \\ 3 \end{pmatrix}.$$

- What if the environment fluctuates between two environments?
- Example:

$$C^1 = \begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix}, \ D^1 = \begin{pmatrix} 2 \\ 2 \end{pmatrix},$$

and

$$C^2 = \begin{pmatrix} 2 & 0 \\ 4 & 2 \end{pmatrix}, D^2 = \begin{pmatrix} 3 \\ 3 \end{pmatrix}.$$

$$\lambda(A^1) = \lambda(A^2) = -1 < 0$$

 \Rightarrow

The disease free equilibrium is a global attractor in each environment

Figure: Phase portraits of F^1 and F^2

Still, Random Switching may reverse the trend!

More surprising !

$$C^0 = 10 \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \ C^1 = 10 \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}.$$

$$D^0 = \begin{pmatrix} 11\\11\\20 \end{pmatrix}, \ D^1 = \begin{pmatrix} 20\\20\\11 \end{pmatrix}$$

 F^0, F^1 the associated vector fields on $[0, 1]^3$.

More surprising !

$$C^0 = 10 egin{pmatrix} 1 & 0 & 0 \ 1 & 1 & 0 \ 0 & 0 & 1 \end{pmatrix}, \ C^1 = 10 egin{pmatrix} 1 & 0 & 1 \ 0 & 1 & 0 \ 0 & 1 & 1 \end{pmatrix}.$$

$$D^0 = \begin{pmatrix} 11\\11\\20 \end{pmatrix}, \ D^1 = \begin{pmatrix} 20\\20\\11 \end{pmatrix}$$

 F^0 , F^1 the associated vector fields on $[0,1]^3$.

Here, for every $0 \le t \le 1$ 0 is a global attractor of

$$F^t = (1-t)F^1 + tF^0$$

ullet Fast switching \Rightarrow Extinction of the disease

- \bullet Fast switching \Rightarrow Extinction of the disease
- ullet Slow switching \Rightarrow Extinction of the disease

- ullet Fast switching \Rightarrow Extinction of the disease
- ullet Slow switching \Rightarrow Extinction of the disease
- ullet However, switching at "intermediate rate" \Rightarrow persistence.

Figure: Switching at rate $\beta = 10$.

Figure: Simulation of $||X_t||$ for $\beta = 10$.

Figure: the critical curve $\beta \mapsto \Lambda(\beta)$.

$$\Lambda(\beta) > 0 \Rightarrow \text{ persistence}$$

 $\Lambda(\beta) < 0 \Rightarrow \text{ extinction}$

Logistic Lotka Volterra Lajmanovich and Yorke

II: A Glimpse of the Maths

ullet (X_t) a "good" (Feller, good behavior at ∞ , etc.) Markov process on some "good" (Polish, locally compact) space

$$M=M_+\cup M_0$$

ullet (X_t) a "good" (Feller, good behavior at ∞ , etc.) Markov process on some "good" (Polish, locally compact) space

$$M = M_+ \cup M_0$$

• M_0 is a closed set = extinction set

ullet (X_t) a "good" (Feller, good behavior at ∞ , etc.) Markov process on some "good" (Polish, locally compact) space

$$M = M_+ \cup M_0$$

- M_0 is a closed set = extinction set
- $M_+ = M \setminus M_0 =$ coexistence set

ullet (X_t) a "good" (Feller, good behavior at ∞ , etc.) Markov process on some "good" (Polish, locally compact) space

$$M = M_+ \cup M_0$$

- M_0 is a closed set = extinction set
- $M_+ = M \setminus M_0 = \text{coexistence set}$
- M_0 , hence $M_+ = M \setminus M_0$, is invariant:

$$x \in M_0 \Leftrightarrow X_t^x \in M_0$$
.

Abstract Framework

• (X_t) a "good" (Feller, good behavior at ∞ , etc.) Markov process on some "good" (Polish, locally compact) space

$$M = M_+ \cup M_0$$

- M_0 is a closed set = extinction set
- $M_{+} = M \setminus M_{0} =$ coexistence set
- M_0 , hence $M_+ = M \setminus M_0$, is invariant:

$$x \in M_0 \Leftrightarrow X_t^x \in M_0$$
.

(here
$$x = X_0^x$$
)

Stochastic Persistence

ullet Extinction means $X_t o M_0$ a.s

Stochastic Persistence

- ullet Extinction means $X_t o M_0$ a.s
- Persistence means
- (1) (weak version) $\forall x \in M^+$ limits points of

$$\Pi_t(.) = \frac{1}{t} \int_0^t \delta_{X_s^{\times}} ds$$

are (invariant) probabilities on M^+ ; or

Stochastic Persistence

- ullet Extinction means $X_t o M_0$ a.s
- Persistence means
- (1) (weak version) $\forall x \in M^+$ limits points of

$$\Pi_t(.) = \frac{1}{t} \int_0^t \delta_{X_s^{\times}} ds$$

are (invariant) probabilities on M^+ ; or

(II) (strong version) $\exists \Pi$ invariant probability on M^+ ; such that $\forall x \in M^+$

$$\lim_{t\to\infty}|Law(X_t^x)-\Pi|=0.$$

How can we prove / disprove stochastic persistence ?

Key idea Introduce a stochastic version of Hofbauer's average Lyapunov function:

Key idea Introduce a stochastic version of Hofbauer's average Lyapunov function:

 $V: M_+ \mapsto \mathbb{R}_+$, such that :

- $V(x) \to \infty \Leftrightarrow x \to M_0$
- LV extends continuously to $H: M \mapsto \mathbb{R}$, Here L is the generator of (P_t)

Key idea Introduce a stochastic version of Hofbauer's average Lyapunov function:

 $V: M_+ \mapsto \mathbb{R}_+$, such that :

- $V(x) \to \infty \Leftrightarrow x \to M_0$
- LV extends continuously to $H: M \mapsto \mathbb{R}$, Here L is the generator of (P_t)

Definition (H-Exponents)

$$\Lambda^{-}(H) = -\sup\{\mu H : \ \mu \in \mathcal{P}_{erg}(M_0)\},\$$

$$\Lambda^+(H) = -\inf\{\mu H : \ \mu \in \mathcal{P}_{erg}(M_0)\}.$$

Here $\mathcal{P}_{erg}(M_0) = \text{ergodic probabilities on } M_0$

$$\begin{aligned} dx &= x(a-bx)dt + x\sigma dB_t, \\ M &= \mathbb{R}_+, M_0 = \{0\}, \mathcal{P}_{erg}(M_0) = \{\delta_0\} \end{aligned}$$

$$dx=x(a-bx)dt+x\sigma dB_t,$$
 $M=\mathbb{R}_+,M_0=\{0\},\mathcal{P}_{erg}(M_0)=\{\delta_0\}$ $V(x)=-\log(x),$

$$dx = x(a - bx)dt + x\sigma dB_t,$$

$$M = \mathbb{R}_+, M_0 = \{0\}, \mathcal{P}_{erg}(M_0) = \{\delta_0\}$$

$$V(x) = -\log(x), \ LV(x) = -(a - bx) + \frac{1}{2}\sigma^2$$

$$dx=x(a-bx)dt+x\sigma dB_t,$$
 $M=\mathbb{R}_+, M_0=\{0\}, \mathcal{P}_{erg}(M_0)=\{\delta_0\}$ $V(x)=-\log(x), \ LV(x)=-(a-bx)+rac{1}{2}\sigma^2 \ \ ext{extends to } M_0, \ ext{and}$ $\Lambda^-(H)=\Lambda^+(H)=a-rac{1}{2}\sigma^2$

$$dx=x(a-bx)dt+x\sigma dB_t,$$
 $M=\mathbb{R}_+, M_0=\{0\}, \mathcal{P}_{erg}(M_0)=\{\delta_0\}$ $V(x)=-\log(x), \ LV(x)=-(a-bx)+rac{1}{2}\sigma^2 \ \ ext{extends to } M_0, \ ext{and}$ $\Lambda^-(H)=\Lambda^+(H)=a-rac{1}{2}\sigma^2$

ullet For general population models a good choice for V is

$$V(x) = -\sum_i p_i \log(x_i)$$

$$dx=x(a-bx)dt+x\sigma dB_t,$$
 $M=\mathbb{R}_+,M_0=\{0\},\mathcal{P}_{erg}(M_0)=\{\delta_0\}$ $V(x)=-\log(x),\ LV(x)=-(a-bx)+rac{1}{2}\sigma^2$ extends to $M_0,$ and $\Lambda^-(H)=\Lambda^+(H)=a-rac{1}{2}\sigma^2$

ullet For general population models a good choice for V is

$$V(x) = -\sum_{i} p_{i} \log(x_{i})$$

- ullet For epidemic models things are more complicated ... but V,H can be defined
- $\Lambda^+(H) = \text{top Lyapounov}$ exponent of the linearized system
- Often, $\Lambda^-(H) = \Lambda^+(H)$

Theorem

 $\Lambda^-(H)>0 \Rightarrow \mbox{(weak) Stochastic Persistence}$

Theorem

$$\Lambda^{-}(H) > 0 \Rightarrow (weak)$$
 Stochastic Persistence

Generalizes previous results in collaboration with Hofbauer & Sandholm 2008, Schreiber 2009, Atchade & Schreiber 2011

Theorem

$$\Lambda^{-}(H) > 0 \Rightarrow (weak)$$
 Stochastic Persistence

Generalizes previous results in collaboration with Hofbauer & Sandholm 2008, Schreiber 2009, Atchade & Schreiber 2011

Corollary

If furthermore, the process is irreducible, there exists a unique invariant probability $\Pi(dx) = \pi(x)dx$ on M_+ such that for all $x \in M_+$

$$\Pi_t \to \Pi$$

Theorem

$$\Lambda^{-}(H) > 0 \Rightarrow Stochastic Persistence$$

Generalizes previous results in collaboration with Hofbauer & Sandholm 2008, Schreiber 2009, Atchade & Schreiber 2011

Corollary

If furthermore, the process is strongly irreducible there exists a unique invariant probability $\Pi(dx)=\pi(x)dx$ on M_+ such that for all $x\in M_+$

$$\|P(X_t \in .|X_0 = x) - \Pi(.)\| \le Ce^{-\lambda t}/(1 + e^{\theta V(x)})$$

Typically, sufficient conditions are:

1 There exists an accessible point $x_0 \in M_+$;

② A weak (strong) Doeblin condition holds at x_0 .

Typically, sufficient conditions are:

- **1** There exists an accessible point $x_0 \in M_+$;
 - For SDE, Stroock and Varadhan control problem

2 A weak (strong) Doeblin condition holds at x_0 .

Typically, sufficient conditions are:

- There exists an accessible point $x_0 \in M_+$;
 - For SDE, Stroock and Varadhan control problem
 - For Random Switching, control problem induced by the vector fields
- 2 A weak (strong) Doeblin condition holds at x_0 .

Typically, sufficient conditions are:

- **1** There exists an accessible point $x_0 \in M_+$;
 - For SDE, Stroock and Varadhan control problem
 - For Random Switching, control problem induced by the vector fields
- 2 A weak (strong) Doeblin condition holds at x_0 .
 - For SDE's classical conditions are given by "certain" Hormander conditions at x_0

Typically, sufficient conditions are:

- **1** There exists an accessible point $x_0 \in M_+$;
 - For SDE, Stroock and Varadhan control problem
 - For Random Switching, control problem induced by the vector fields
- 2 A weak (strong) Doeblin condition holds at x_0 .
 - For SDE's classical conditions are given by "certain" Hormander conditions at x_0
 - Idem for Random Switching (with other Hormander conditions).
 - Follows from (Bakthin, Hurth, 2012); (Benaim, Leborgne, Malrieu, Zitt, 2012, 2015)

