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Introduction

Introduction

e An important issue in ecology is to find out

under which conditions a group of interacting species -
plants, animals, viral particles - can coexist.

e Classical approach to these questions has been the development
of Deterministic Models of Interaction ODEs, PDEs,
Difference equations, etc.

= Mathematical theory of Deterministic Persistence

e The theory began in the late 1970s and developed rapidly with
the help of the available tools from dynamical system theory.
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Introduction

e To take into account environmental fluctuations one need to
consider Stochastic Models of Interaction

= Mathematical theory of stochastic Persistence

The theory began to emerge with the work of Chesson, Ellner, and
others in the 80s but, from a "math perspective", is still in its
infancy

e Purpose of this talk : present some recent results on the subject
~ based on influential collaboration with

Sebastian Schreiber (UC Davis) and Josef Hofbauer (Wien),

~ and recent works with

Claude Lobry (Nice), Edouard Strickler (Neuchatel)
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Examples Lotka Volterra
Lajmanovich and Yorke

Verhulst model (1840)

dx

— = x(a— bx
it ( )
x > 0, abundance of the population,

a = intrinsic growth rate,

b>0
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Lajmanovich and Yorke

Verhulst model (1840)

dx
dt
ea < 0= x(t) — 0: Extinction

= x(a — bx)

®a > 0= x(t) = v := 7 Persistence

Ok but what does it mean if there is (stochastic) variability ?

Michel Benaim Neuchatel University Stochastic Persistence



Logistic
Examples Lotka Volterra
Lajmanovich and Yorke

Environmental variability

pm = x(a — bx)
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a < a-+ noise

% = x(a — bx)
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Environmental variability

e Assume Gaussian fluctuations of the intrinsic growth rate

a < a-+ noise

dx = x(a — bx)dt + xodB;
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Environmental variability

e Assume Gaussian fluctuations of the intrinsic growth rate

a < a-+ noise

dx = x(a — bx)dt + xodB; ( not /xodB;)
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Environmental variability

e Assume Gaussian fluctuations of the intrinsic growth rate

a < a-+ noise

dx = x(a — bx)dt + xodB;
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e Elementary one dimensional SDEs theory ~~

° 2

a—%<0=>x(t)—>0
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e Elementary one dimensional SDEs theory ~~

° 2

a—%<0=>x(t)—>0

2]

2
a— % > 0= Law (x(t)) = [(1 — 0%/2a, 0%/2b)

o
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e Elementary one dimensional SDEs theory ~~
o 2
a—7<0:>x(t)—>0

o
2
a— % > 0= Law (x(t)) = [(6%/2a — 1,52/2b)

Looks like a sensible definition of Stochastic Extinction/Persistence
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e Elementary one dimensional SDEs theory ~~

o

0,2
a—7<0:>X(t)—>0
° 2

a— % > 0= Law (x(t)) = [(6%/2a — 1,52/2b)

Looks like a sensible definition of Stochastic Extinction/Persistence

Ok, BUT what if the model is more complicated or the noise non
gaussian 7
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| : Some motivating examples
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Lotka Volterra ( based on B & LObI’y, Annals of Applied Prob 2016)

e 2 species x and y characterized by their abundances x,y > 0.
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e 2 species x and y characterized by their abundances x,y > 0.
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Lotka Volterra ( based on B & LObI’y, Annals of Applied Prob 2016)

e 2 species x and y characterized by their abundances x,y > 0.
e Lotka Volterra ODE

(va) = FS(Xay)

| ax(1 —ax — by)
Foen ={ G- o o)

e £ =(a,a,b,0,c,d) is the environment:

«a,a,b,B,c,d >0
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e Environment & is said favorable to species x if

a<cand b<d.
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e Environment & is said favorable to species x if
a<cand b<d.

= Extinction of y and Persistence of x.
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Lotka Volterra in fluctuating environment

Ok but what if the environment fluctuates 7

(X’ Y) = Fsu(t)(Xv Y)

where
oo, &1 are two favorable environments

eu(t) € {0,1} is a jump process

0 — 1 at rate A

1 — 0 at rate \;.
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Figure: Phase portraits of F¢, and Fg,
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Figure: Phase portraits of F¢, and Fg,

Different values of \g, A1 can lead to various behaviors...
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Simulations
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Figure: extinction of 2
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© Lajmanovich and Yorke
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Lajmanovich and Yorke (based on B & Strickler Annals of Applied
Prob 2019)

- d groups
- In each group each individual can be infected

- 0 < x; <1 = proportion of infected individuals in group i.
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Lajmanovich and Yorke (based on B & Strickler Annals of Applied
Prob 2019)

- d groups
- In each group each individual can be infected

- 0 < x; <1 = proportion of infected individuals in group i.

e Lajmanovich and Yorke ODE

dx;
i (1—x) Z Ciixj) — Dix;
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Lajmanovich and Yorke (based on B & Strickler Annals of Applied
Prob 2019)

- d groups
- In each group each individual can be infected

- 0 < x; <1 = proportion of infected individuals in group i.

e Lajmanovich and Yorke ODE

dx;
i (1—x) Z Ciixj) — Dix;

- Cjj = rate of infection from group i to group j.

- D; cure rate in group i
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Suppose C irreducible
A = C — diag(D)

A(A) = largest real part of eigenvalues of A.
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Suppose C irreducible
A = C — diag(D)

A(A) = largest real part of eigenvalues of A.

Theorem (Lajmanovich and Yorke 1976)

If M(A) < 0, the disease free equilibrium 0 /s a global attractor
If \(A) > 0 there exists another equilibrium x* >> 0 and every non
zero trajectory converges to x*
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Lajmanovich and Yorke

e What if the environment fluctuates between two environments?
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e What if the environment fluctuates between two environments?

o390 )
e-(9--0)

e Example:

and
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e What if the environment fluctuates between two environments?

o390 )
e-(9--0)

MA) = ANA%) =-1<0

e Example:

and

=

The disease free equilibrium is a global attractor in each
environment
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Figure: Phase portraits of F! and F?

Persistence
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Lajmanovich and Yorke

Still, Random Switching may reverse the trend !
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e More surprising !

100 101
c®=10(1 1 0f),ct=10({0 1 0
001 01 1

11 20

D= [11], D= |20

20 11

F°, F! the associated vector fields on [0, 1]°.
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e More surprising !

100 101
c®=10(1 1 0f),ct=10({0 1 0
001 01 1

11 20

D= [11], D= |20

20 11

F°, F! the associated vector fields on [0, 1]°.

Here, for every 0 < t <1 0 is a global attractor of

Ft=(1-t)F +tF°
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e Fast switching = Extinction of the disease
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e Slow switching = Extinction of the disease
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e Fast switching = Extinction of the disease
e Slow switching = Extinction of the disease

e However, switching at "intermediate rate" = persistence.

/
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Figure: Switching at rate 5 = 10.

Michel Benaim Neuchatel University Stochastic Persistence



Logistic
Examples Lotka Volterra

Lajmanovich and Yorke

0.25 4

0.15 4

0.1+

0.05 4

0 T T T T T T T T T T
0 20 40 60 80 100 120 140 160 180 200 220

Figure: Simulation of || X;|| for 8 = 10.
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Figure: the critical curve 5 — A(5).

A(B) > 0 = persistence
A(B) < 0 = extinction
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Lajmanovich and Yorke

[l : A Glimpse of the Maths

Persistence
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Abstract Framework

e (X;) a "good" (Feller, good behavior at oo, etc. ) Markov
process on some "good" (Polish, locally compact) space

M= M, UM,
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A glimpse of the Maths Stochastic Persistence

Abstract Framework

e (X;) a "good" (Feller, good behavior at oo, etc. ) Markov
process on some "good" (Polish, locally compact) space

M= M, UM,

e Mp is a closed set = extinction set

e My = M\ My = coexistence set
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A glimpse of the Maths Stochastic Persistence

Abstract Framework

e (X;) a "good" (Feller, good behavior at oo, etc. ) Markov
process on some "good" (Polish, locally compact) space

M= M, UM,

e Mp is a closed set = extinction set
e My = M\ My = coexistence set

e Mo, hence My = M\ My, is invariant:

X€M0<:>X;<€M0.
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A glimpse of the Maths Stochastic Persistence

Abstract Framework

e (X;) a "good" (Feller, good behavior at oo, etc. ) Markov
process on some "good" (Polish, locally compact) space

M= M, UM,

e Mp is a closed set = extinction set
e My = M\ My = coexistence set

e Mo, hence My = M\ My, is invariant:
x € My & le( e M.

(here x = X{)
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Stochastic Persistence

e Extinction means Xy — Mg a.s
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Stochastic Persistence

e Extinction means Xy — Mg a.s

e Persistence means
(1) (weak version) Vx € M limits points of

1 t
I_It() = t/o 5szd5

are (invariant) probabilities on M*; or
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A glimpse of the Maths Stochastic Persistence

Stochastic Persistence

e Extinction means Xy — Mg a.s

e Persistence means
(1) (weak version) Vx € M limits points of

1 t
I_It() = t/o 5szd5

are (invariant) probabilities on M*; or

(I1) (strong version) 31 invariant probability on M™; such that
Vx € M
lim |Law(X[) — M| = 0.

t—00
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Stochastic Persistence

A glimpse of the Maths

How can we prove / disprove
stochastic persistence 7
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A glimpse of the Maths

Key idea Introduce a stochastic version of Hofbauer’s average
Lyapunov function:
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A glimpse of the Maths Stochastic Persistence

Key idea Introduce a stochastic version of Hofbauer’s average
Lyapunov function:

V : My — R4, such that :

o V(x) = o0& x— M

e LV extends continuously to H: M — R,
Here L is the generator of (P;)
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Framework
Stochastic Persistence

A glimpse of the Maths

Key idea Introduce a stochastic version of Hofbauer’s average
Lyapunov function:

V : My — R4, such that :

o V(x) = o0& x— M

e LV extends continuously to H: M — R,
Here L is the generator of (P;)

Definition (H— Exponents)

A_(H) = _Sup{IUH CHE :Perg(MO)}v
AT (H) = —inf{uH : pu € Perg(Mo)}.
Here Perg(Mo) = ergodic probabilities on My
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A glimpse of the Maths Stochastic Persistence

e Toy example (Verlhust)
dx = x(a — bx)dt + xodB,

M=Ry My = {O}a?erg(MO) = {60}
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A glimpse of the Maths Stochastic Persistence

e Toy example (Verlhust)
dx = x(a — bx)dt + xodB,
M =R, My = {0}, Perg(Mo) = {00}
V(x) = — log(x),
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Stochastic Persistence

A glimpse of the Maths

e Toy example (Verlhust)
dx = x(a — bx)dt + xodB,

M=Ry My = {O}a?erg(MO) = {60}
V(x) = —log(x), LV(x) = —(a — bx) + 102
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Stochastic Persistence

A glimpse of the Maths

e Toy example (Verlhust)
dx = x(a — bx)dt + xodB,
M =Ry, My = {0}, Perg(Mo) = {00}
V(x) = —log(x), LV(x) = —(a — bx) + 302 extends to My, and

A (H)=A"(H)=a— %02
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A glimpse of the Maths

e Toy example (Verlhust)
dx = x(a — bx)dt + xodB,
M =Ry, My = {0}, Perg(Mo) = {00}
V(x) = —log(x), LV(x) = —(a — bx) + 302 extends to My, and

A (H)=A"(H)=a— %02

e For general population models a good choice for V is

V(x) =— Z pilog(x;)
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Framework
Stochastic Persistence

A glimpse of the Maths

e Toy example (Verlhust)
dx = x(a — bx)dt + xodB,

M=R,, My = {O}a?erg(MO) = {60}
V(x) = —log(x), LV(x) = —(a — bx) + 302 extends to My, and

A (H)=A"(H)=a— %02

e For general population models a good choice for V is
V(x) == pilog(x)
i

e For epidemic models things are more complicated ... but V, H
can be defined

- AT (H) = top Lyapounov exponent of the linearized system

- Often, A= (H) = AT (H)
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A glimpse of the Maths Stochastic Persistence

Persistence Theorem

A~ (H) > 0 = (weak) Stochastic Persistence

Michel Benaim Neuchatel University Stochastic Persistence



Framework

A glimpse of the Maths Stochastic Persistence

Persistence Theorem

A~ (H) > 0 = (weak) Stochastic Persistence

Generalizes previous results in collaboration with Hofbauer &
Sandholm 2008, Schreiber 2009, Atchade & Schreiber 2011
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A glimpse of the Maths Stochastic Persistence

Persistence Theorem

A~ (H) > 0 = (weak) Stochastic Persistence

Generalizes previous results in collaboration with Hofbauer &
Sandholm 2008, Schreiber 2009, Atchade & Schreiber 2011

If furthermore, the process is irreducible, there exists a unique
invariant probability M(dx) = m(x)dx on M, such that for all
X € M+

My — M

Michel Benaim Neuchatel University Stochastic Persistence



Framework

A glimpse of the Maths Stochastic Persistence

Persistence Theorem

N~ (H) > 0 = Stochastic Persistence

Generalizes previous results in collaboration with Hofbauer &
Sandholm 2008, Schreiber 2009, Atchade & Schreiber 2011

If furthermore, the process is strongly irreducible there exists a
unique invariant probability M(dx) = m(x)dx on M, such that for
all x € M+

IP(Xe € [ Xo = x) = (|| < Ce™ /(1 + V1))
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© There exists an accessible point xg € My ;

@ A weak (strong) Doeblin condition holds at xg.
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"Irreducible" and "strongly irreducible" need to be defined.

Typically, sufficient conditions are:

© There exists an accessible point xg € My ;
- For SDE, Stroock and Varadhan control problem

- For Random Switching, control problem induced by the
vector fields

@ A weak (strong) Doeblin condition holds at xg.
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A glimpse of the Maths

"Irreducible" and "strongly irreducible" need to be defined.

Typically, sufficient conditions are:
© There exists an accessible point xg € My ;
- For SDE, Stroock and Varadhan control problem

- For Random Switching, control problem induced by the
vector fields

@ A weak (strong) Doeblin condition holds at xg.
- For SDE’s classical conditions are given by "certain"
Hormander conditions at xg
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Framework
Stochastic Persistence

A glimpse of the Maths

"Irreducible" and "strongly irreducible" need to be defined.

Typically, sufficient conditions are:

© There exists an accessible point xg € My ;
- For SDE, Stroock and Varadhan control problem

- For Random Switching, control problem induced by the
vector fields

@ A weak (strong) Doeblin condition holds at xg.
- For SDE’s classical conditions are given by "certain"
Hormander conditions at xg

- Idem for Random Switching (with other Hormander
conditions).

Follows from (Bakthin, Hurth, 2012); (Benaim, Leborgne,
Malrieu, Zitt, 2012, 2015)
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