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Introduction

• An important issue in ecology is to �nd out

under which conditions a group of interacting species -

plants, animals, viral particles - can coexist.

• Classical approach to these questions has been the development
of Deterministic Models of Interaction ODEs, PDEs,
Di�erence equations, etc.

⇒ Mathematical theory of Deterministic Persistence

• The theory began in the late 1970s and developed rapidly with
the help of the available tools from dynamical system theory.

Michel Benaim Neuchâtel University Stochastic Persistence



Introduction
Examples

A glimpse of the Maths

Introduction

• An important issue in ecology is to �nd out

under which conditions a group of interacting species -

plants, animals, viral particles - can coexist.

• Classical approach to these questions has been the development
of Deterministic Models of Interaction

ODEs, PDEs,
Di�erence equations, etc.

⇒ Mathematical theory of Deterministic Persistence

• The theory began in the late 1970s and developed rapidly with
the help of the available tools from dynamical system theory.

Michel Benaim Neuchâtel University Stochastic Persistence



Introduction
Examples

A glimpse of the Maths

Introduction

• An important issue in ecology is to �nd out

under which conditions a group of interacting species -

plants, animals, viral particles - can coexist.

• Classical approach to these questions has been the development
of Deterministic Models of Interaction ODEs,

PDEs,
Di�erence equations, etc.

⇒ Mathematical theory of Deterministic Persistence

• The theory began in the late 1970s and developed rapidly with
the help of the available tools from dynamical system theory.

Michel Benaim Neuchâtel University Stochastic Persistence



Introduction
Examples

A glimpse of the Maths

Introduction

• An important issue in ecology is to �nd out

under which conditions a group of interacting species -

plants, animals, viral particles - can coexist.

• Classical approach to these questions has been the development
of Deterministic Models of Interaction ODEs, PDEs,

Di�erence equations, etc.

⇒ Mathematical theory of Deterministic Persistence

• The theory began in the late 1970s and developed rapidly with
the help of the available tools from dynamical system theory.

Michel Benaim Neuchâtel University Stochastic Persistence



Introduction
Examples

A glimpse of the Maths

Introduction

• An important issue in ecology is to �nd out

under which conditions a group of interacting species -

plants, animals, viral particles - can coexist.

• Classical approach to these questions has been the development
of Deterministic Models of Interaction ODEs, PDEs,
Di�erence equations, etc.

⇒ Mathematical theory of Deterministic Persistence

• The theory began in the late 1970s and developed rapidly with
the help of the available tools from dynamical system theory.

Michel Benaim Neuchâtel University Stochastic Persistence



Introduction
Examples

A glimpse of the Maths

Introduction

• An important issue in ecology is to �nd out

under which conditions a group of interacting species -

plants, animals, viral particles - can coexist.

• Classical approach to these questions has been the development
of Deterministic Models of Interaction ODEs, PDEs,
Di�erence equations, etc.

⇒ Mathematical theory of Deterministic Persistence

• The theory began in the late 1970s and developed rapidly with
the help of the available tools from dynamical system theory.

Michel Benaim Neuchâtel University Stochastic Persistence



Introduction
Examples

A glimpse of the Maths

Introduction

• An important issue in ecology is to �nd out

under which conditions a group of interacting species -

plants, animals, viral particles - can coexist.

• Classical approach to these questions has been the development
of Deterministic Models of Interaction ODEs, PDEs,
Di�erence equations, etc.

⇒ Mathematical theory of Deterministic Persistence

• The theory began in the late 1970s and developed rapidly with
the help of the available tools from dynamical system theory.

Michel Benaim Neuchâtel University Stochastic Persistence



Introduction
Examples

A glimpse of the Maths

Introduction

• To take into account environmental �uctuations one need to
consider Stochastic Models of Interaction

⇒ Mathematical theory of stochastic Persistence

The theory began to emerge with the work of Chesson, Ellner, and
others in the 80s

• Purpose of this talk : present some recent results on the subject

 based on in�uential collaboration with

Sebastian Schreiber (UC Davis) and Josef Hofbauer (Wien),

 and recent works with

Claude Lobry (Nice), Edouard Strickler (Neuchatel)
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Lajmanovich and Yorke

Verhulst model (1840)

dx

dt
= x(a− bx)

x ≥ 0, abundance of the population,

a = intrinsic growth rate,

b ≥ 0
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Verhulst model (1840)

dx

dt
= x(a− bx)

•a < 0⇒ x(t)→ 0 : Extinction

•a > 0⇒ x(t)→ γ := a
b Persistence

Ok but what does it mean if there is (stochastic) variability ?
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Environmental variability

• Assume Gaussian �uctuations of the intrinsic growth rate

a← a + noise

dx

dt
= x(a− bx)

dt + xσdBt ( not
√
xσdBt)
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• Elementary one dimensional SDEs theory  
1

a− σ2

2
< 0⇒ x(t)→ 0

2

a− σ2

2
> 0⇒ Law (x(t))→ Γ(1− σ2/2a, σ2/2b)
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• Elementary one dimensional SDEs theory  
1

a− σ2

2
< 0⇒ x(t)→ 0

2

a− σ2

2
> 0⇒ Law (x(t))→ Γ(σ2/2a− 1, σ2/2b)

Looks like a sensible de�nition of Stochastic Extinction/Persistence

Ok, BUT what if the model is more complicated or the noise non
gaussian ?
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2 Lotka-Volterra
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Lotka Volterra ( based on B & Lobry, Annals of Applied Prob 2016)

• 2 species x and y characterized by their abundances x , y ≥ 0.

• Lotka Volterra ODE

(ẋ , ẏ) = FE(x , y)

FE(x , y) =

{
αx(1− ax − by)
βy(1− cx − dy)

• E = (α, a, b, β, c , d) is the environment:

α, a, b, β, c , d > 0

.
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• Environment E is said favorable to species x if

a < c and b < d .

⇒ Extinction of y and Persistence of x.

Figure: Phase portrait of FE with E ∈ Envx.
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Lotka Volterra in �uctuating environment

Ok but what if the environment �uctuates ?

i.e
(Ẋ , Ẏ ) = FEu(t)

(X ,Y )

where
•E0,E1 are two favorable environments

•u(t) ∈ {0, 1} is a jump process

0→ 1 at rate λ0

1→ 0 at rate λ1.
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,

Figure: Phase portraits of FE0
and FE1

Di�erent values of λ0, λ1 can lead to various behaviors...
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Simulations

Figure: extinction of 2
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Figure: Persistence
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Figure: Extinction of 1
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Figure: Extinction of 1 or 2
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Lajmanovich and Yorke (based on B & Strickler Annals of Applied

Prob 2019)

- d groups

- In each group each individual can be infected

- 0 ≤ xi ≤ 1 = proportion of infected individuals in group i .

• Lajmanovich and Yorke ODE

dxi
dt

= (1− xi )(
∑
j

Cijxj)− Dixi

- Cij = rate of infection from group i to group j .

- Di cure rate in group i
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Suppose C irreducible

A = C − diag(D)

λ(A) = largest real part of eigenvalues of A.

Theorem (Lajmanovich and Yorke 1976)

If λ(A) ≤ 0, the disease free equilibrium 0 is a global attractor

If λ(A) > 0 there exists another equilibrium x∗ >> 0 and every non

zero trajectory converges to x∗

Michel Benaim Neuchâtel University Stochastic Persistence



Introduction
Examples

A glimpse of the Maths

Logistic
Lotka Volterra
Lajmanovich and Yorke

Suppose C irreducible

A = C − diag(D)

λ(A) = largest real part of eigenvalues of A.

Theorem (Lajmanovich and Yorke 1976)

If λ(A) ≤ 0, the disease free equilibrium 0 is a global attractor

If λ(A) > 0 there exists another equilibrium x∗ >> 0 and every non

zero trajectory converges to x∗

Michel Benaim Neuchâtel University Stochastic Persistence



Introduction
Examples

A glimpse of the Maths

Logistic
Lotka Volterra
Lajmanovich and Yorke

• What if the environment �uctuates between two environments?

• Example:

C 1 =

(
1 4
0 1

)
, D1 =

(
2
2

)
,

and

C 2 =

(
2 0
4 2

)
, D2 =

(
3
3

)
.

λ(A1) = λ(A2) = −1 < 0

⇒

The disease free equilibrium is a global attractor in each
environment
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,

Figure: Phase portraits of F 1 and F 2
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Still, Random Switching may reverse the trend !

,
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• More surprising !

C 0 = 10

1 0 0
1 1 0
0 0 1

 , C 1 = 10

1 0 1
0 1 0
0 1 1

 .

D0 =

11
11
20

 , D1 =

20
20
11


F 0,F 1 the associated vector �elds on [0, 1]3.

Here, for every 0 ≤ t ≤ 1 0 is a global attractor of

F t = (1− t)F 1 + tF 0
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• Fast switching ⇒ Extinction of the disease

• Slow switching ⇒ Extinction of the disease

• However, switching at "intermediate rate" ⇒ persistence.

Figure: Switching at rate β = 10.
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Figure: Simulation of ‖Xt‖ for β = 10.

Michel Benaim Neuchâtel University Stochastic Persistence



Introduction
Examples

A glimpse of the Maths

Logistic
Lotka Volterra
Lajmanovich and Yorke

Figure: the critical curve β 7→ Λ(β).

Λ(β) > 0⇒ persistence
Λ(β) < 0⇒ extinction
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II : A Glimpse of the Maths
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Abstract Framework

• (Xt) a "good" (Feller, good behavior at ∞, etc. ) Markov
process on some "good" (Polish, locally compact) space

M = M+ ∪M0

• M0 is a closed set = extinction set

• M+ = M \M0 = coexistence set

• M0, hence M+ = M \M0, is invariant:

x ∈ M0 ⇔ X x
t ∈ M0.

(here x = X x
0
)

Michel Benaim Neuchâtel University Stochastic Persistence



Introduction
Examples

A glimpse of the Maths

Framework
Stochastic Persistence

Abstract Framework

• (Xt) a "good" (Feller, good behavior at ∞, etc. ) Markov
process on some "good" (Polish, locally compact) space

M = M+ ∪M0

• M0 is a closed set = extinction set

• M+ = M \M0 = coexistence set

• M0, hence M+ = M \M0, is invariant:

x ∈ M0 ⇔ X x
t ∈ M0.

(here x = X x
0
)

Michel Benaim Neuchâtel University Stochastic Persistence



Introduction
Examples

A glimpse of the Maths

Framework
Stochastic Persistence

Abstract Framework

• (Xt) a "good" (Feller, good behavior at ∞, etc. ) Markov
process on some "good" (Polish, locally compact) space

M = M+ ∪M0

• M0 is a closed set = extinction set

• M+ = M \M0 = coexistence set

• M0, hence M+ = M \M0, is invariant:

x ∈ M0 ⇔ X x
t ∈ M0.

(here x = X x
0
)

Michel Benaim Neuchâtel University Stochastic Persistence



Introduction
Examples

A glimpse of the Maths

Framework
Stochastic Persistence

Abstract Framework

• (Xt) a "good" (Feller, good behavior at ∞, etc. ) Markov
process on some "good" (Polish, locally compact) space

M = M+ ∪M0

• M0 is a closed set = extinction set

• M+ = M \M0 = coexistence set

• M0, hence M+ = M \M0, is invariant:

x ∈ M0 ⇔ X x
t ∈ M0.

(here x = X x
0
)

Michel Benaim Neuchâtel University Stochastic Persistence



Introduction
Examples

A glimpse of the Maths

Framework
Stochastic Persistence

Abstract Framework

• (Xt) a "good" (Feller, good behavior at ∞, etc. ) Markov
process on some "good" (Polish, locally compact) space

M = M+ ∪M0

• M0 is a closed set = extinction set

• M+ = M \M0 = coexistence set

• M0, hence M+ = M \M0, is invariant:

x ∈ M0 ⇔ X x
t ∈ M0.

(here x = X x
0
)

Michel Benaim Neuchâtel University Stochastic Persistence



Introduction
Examples

A glimpse of the Maths

Framework
Stochastic Persistence

Stochastic Persistence

• Extinction means Xt → M0 a.s

• Persistence means
(I ) (weak version) ∀x ∈ M+ limits points of

Πt(.) =
1

t

∫ t

0

δX x
s
ds

are (invariant) probabilities on M+; or

(II ) (strong version) ∃Π invariant probability on M+; such that
∀x ∈ M+

lim
t→∞

|Law(X x
t )− Π| = 0.
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How can we prove / disprove
stochastic persistence ?
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Key idea Introduce a stochastic version of Hofbauer's average
Lyapunov function:

V : M+ 7→ R+, such that :
• V (x)→∞⇔ x → M0

• LV extends continuously to H : M 7→ R,
Here L is the generator of (Pt)

De�nition (H− Exponents)

Λ−(H) = − sup{µH : µ ∈ Perg (M0)},

Λ+(H) = − inf{µH : µ ∈ Perg (M0)}.

Here Perg (M0) = ergodic probabilities on M0
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• Toy example (Verlhust)

dx = x(a− bx)dt + xσdBt ,

M = R+,M0 = {0},Perg (M0) = {δ0}

V (x) = − log(x), LV (x) = −(a− bx) + 1

2
σ2 extends to M0, and

Λ−(H) = Λ+(H) = a− 1

2
σ2

• For general population models a good choice for V is

V (x) = −
∑
i

pi log(xi )

• For epidemic models things are more complicated ... but V ,H
can be de�ned
- Λ+(H) = top Lyapounov exponent of the linearized system
- Often, Λ−(H) = Λ+(H)

Michel Benaim Neuchâtel University Stochastic Persistence



Introduction
Examples

A glimpse of the Maths

Framework
Stochastic Persistence

• Toy example (Verlhust)

dx = x(a− bx)dt + xσdBt ,

M = R+,M0 = {0},Perg (M0) = {δ0}

V (x) = − log(x),

LV (x) = −(a− bx) + 1

2
σ2 extends to M0, and

Λ−(H) = Λ+(H) = a− 1

2
σ2

• For general population models a good choice for V is

V (x) = −
∑
i

pi log(xi )

• For epidemic models things are more complicated ... but V ,H
can be de�ned
- Λ+(H) = top Lyapounov exponent of the linearized system
- Often, Λ−(H) = Λ+(H)

Michel Benaim Neuchâtel University Stochastic Persistence



Introduction
Examples

A glimpse of the Maths

Framework
Stochastic Persistence

• Toy example (Verlhust)

dx = x(a− bx)dt + xσdBt ,

M = R+,M0 = {0},Perg (M0) = {δ0}

V (x) = − log(x), LV (x) = −(a− bx) + 1

2
σ2

extends to M0, and

Λ−(H) = Λ+(H) = a− 1

2
σ2

• For general population models a good choice for V is

V (x) = −
∑
i

pi log(xi )

• For epidemic models things are more complicated ... but V ,H
can be de�ned
- Λ+(H) = top Lyapounov exponent of the linearized system
- Often, Λ−(H) = Λ+(H)

Michel Benaim Neuchâtel University Stochastic Persistence



Introduction
Examples

A glimpse of the Maths

Framework
Stochastic Persistence

• Toy example (Verlhust)

dx = x(a− bx)dt + xσdBt ,

M = R+,M0 = {0},Perg (M0) = {δ0}

V (x) = − log(x), LV (x) = −(a− bx) + 1

2
σ2 extends to M0, and

Λ−(H) = Λ+(H) = a− 1

2
σ2

• For general population models a good choice for V is

V (x) = −
∑
i

pi log(xi )

• For epidemic models things are more complicated ... but V ,H
can be de�ned
- Λ+(H) = top Lyapounov exponent of the linearized system
- Often, Λ−(H) = Λ+(H)

Michel Benaim Neuchâtel University Stochastic Persistence



Introduction
Examples

A glimpse of the Maths

Framework
Stochastic Persistence

• Toy example (Verlhust)

dx = x(a− bx)dt + xσdBt ,

M = R+,M0 = {0},Perg (M0) = {δ0}

V (x) = − log(x), LV (x) = −(a− bx) + 1

2
σ2 extends to M0, and

Λ−(H) = Λ+(H) = a− 1

2
σ2

• For general population models a good choice for V is

V (x) = −
∑
i

pi log(xi )

• For epidemic models things are more complicated ... but V ,H
can be de�ned
- Λ+(H) = top Lyapounov exponent of the linearized system
- Often, Λ−(H) = Λ+(H)

Michel Benaim Neuchâtel University Stochastic Persistence



Introduction
Examples

A glimpse of the Maths

Framework
Stochastic Persistence

• Toy example (Verlhust)

dx = x(a− bx)dt + xσdBt ,

M = R+,M0 = {0},Perg (M0) = {δ0}

V (x) = − log(x), LV (x) = −(a− bx) + 1

2
σ2 extends to M0, and

Λ−(H) = Λ+(H) = a− 1

2
σ2

• For general population models a good choice for V is

V (x) = −
∑
i

pi log(xi )

• For epidemic models things are more complicated ... but V ,H
can be de�ned
- Λ+(H) = top Lyapounov exponent of the linearized system
- Often, Λ−(H) = Λ+(H)

Michel Benaim Neuchâtel University Stochastic Persistence



Introduction
Examples

A glimpse of the Maths

Framework
Stochastic Persistence

Persistence Theorem

Theorem

Λ−(H) > 0⇒ (weak) Stochastic Persistence

Generalizes previous results in collaboration with Hofbauer &
Sandholm 2008, Schreiber 2009, Atchade & Schreiber 2011

Corollary

If furthermore, the process is irreducible, there exists a unique

invariant probability Π(dx) = π(x)dx on M+ such that for all

x ∈ M+

Πt → Π
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Persistence Theorem

Theorem

Λ−(H) > 0⇒ Stochastic Persistence

Generalizes previous results in collaboration with Hofbauer &
Sandholm 2008, Schreiber 2009, Atchade & Schreiber 2011

Corollary

If furthermore, the process is strongly irreducible there exists a

unique invariant probability Π(dx) = π(x)dx on M+ such that for

all x ∈ M+

‖P(Xt ∈ .|X0 = x)− Π(.)‖ ≤ Ce−λt/(1 + eθV (x))
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"Irreducible" and "strongly irreducible" need to be de�ned.

Typically, su�cient conditions are:

1 There exists an accessible point x0 ∈ M+;

- For SDE, Stroock and Varadhan control problem

- For Random Switching, control problem induced by the
vector �elds

2 A weak (strong) Doeblin condition holds at x0.

- For SDE's classical conditions are given by "certain"
Hormander conditions at x0

- Idem for Random Switching (with other Hormander
conditions).
Follows from (Bakthin, Hurth, 2012); (Benaim, Leborgne,
Malrieu, Zitt, 2012, 2015)
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