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E. Gobet - CLT for discretization errors based on stopping time sampling 1.1 "Deep teaching"

1 A few examples of collaboration with Nicole
1.1 "Deep teaching"

Pricing barrier options in Nicole’s way

v’ Zero interest rate/zero dividend, Black-Scholes model, maturity 7T

v' Down In Call regular (D < K), payoff 1y, s,<p (ST — K)+
Pricing/hedging:

50 A ST A

1. If S < D, /«n
DIC(S, K, D) = Call(S, K). W
2. SiS > D,

———————————————— D%/K

DIC(S, K, D) = £Put(s, 22) AN
(D

= Kcall(LZ,5) = Call(D, £5).

m Semi-static hedging
w Fxtension to drifted S using the power asset S} (for suitable p)

w Direct proof for explicit distribution of (S7, min; S)
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E. Gobet - CLT for discretization errors based on stopping time sampling 1.2 Sensitivities with respect to boundaries

1.2  Sensitivities with respect to boundaries
With C. Costantini (AMO 2006).

v X: SDE, 7 =inf{s > t: (s, X"") & D}.

v uD(t,x) = Eiy (g(T, X,)e™ Ji el Xe)dr
ftT o I C(T,Xr)drf(S’ Xs)d8>
O: : T time
v D(e) = {(t,x) : (t,x + €O(t,z)) € D}, for ,@ t

e — 0.
Theorem. Let (t,z) € D and set 7. := inf{s > ¢ : (s, X.*) ¢ D(e)}. Then the
application e — uP() (¢, ) is differentiable w.r.t. e = 0 and

DL (t,2)| _y = By [ I XD [(Vu - V)@ (7, X,)|

Link with the smooth-pasting property for American options.
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2 Back to the CLT paper
2.1 Model

1. S: R%valued Brownian semimartingale
2. Discretization of S at random stopping times 7§ =0 < 7" < -+ < 7']"3,% =T
3. Random number of discretization times N}

4. Discretization error &7 := &' + &? of the form

R D N e Dl LS SRS

T 1<t T 1<t

Everything depends on ¢,, — 0.

@ Functional Central Limit Theorem (CLT) for the renormalized discretization
error process (1/N['EP )o<i<T?
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E. Gobet - CLT for discretization errors based on stopping time sampling 2.2 Applications

2.2 Applications

1. Integrated variance estimation [RR12[[LZZ13[[LMR™ 1/]. Here
dS; = bydt + 0:dB; and the goal is to estimate fot Tr(oso!)ds.

Estimation error

t t t
D ASaf - / Tr(ogol)ds = 2 / AS'o,dB, + 2 / bl AS.ds.
0 0

0
T <t

2. Optimal tracking strategies [Fuk11b/[Fukl1a//GL14[/GS18a/. Minimization of
the tracking error of a continuous-times strategy:

¢
/’U(S,Ss)dss— Z U(Tf_l,STZL_l)AST;L/\Sz Z
0

n n
Ti—1<t Th <t

TP At
/ Vsu(riiy, Sen )AS,dS,.
T

3. Parametric estimation for processes [GJ93[[GS18b]. Estimation of a, 8 in the
drift /diffusion coefficients of SDE via minimum contrast estimators.
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E. Gobet - CLT for discretization errors based on stopping time sampling 2.3 Form of the stopping time

2.3 Form of the stopping time

v' Quite general sequences of stopping times

v/ Combination of exit times by S of random domains and Poisson-like random

times

7 =inf{t > 7ty (S =S ) ¢ 5nDn }/\( Ly ten Grp  (Un,i) =80 i) AT

1

for some parameter £, — 0, some stochastic domains D" indexed by time,

some independent random variables (U, ;); n, some negligible error terms
AVRPS
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2.4 Probabilistic model

v (2,7, (F)o<t<T,P) supporting a d-dimensional BM (B;)o<t<T
v right-continuous and P-complete filtration

(HE™):  The process S on [0,T] given by Sy = A¢ + fg 0sdBg, where
v' A na-Holder continous (n4 € (1/2,1]), with finite variation

v (01)o<t<T No/2-Holder continuous adapted invertible

(Hg):
1. Distance between 2 stopping times can not be large in expectation: For some
adapted continuous non-decreasing process (Ct(l))ogth

sup_ (Bo(|Srp = Se [+ Senep — Se |1 <O b (1)

mn
T <t<T
2. Number of stopping times cannot be too large:

Coy :=sup (e, N}) < +o0, as.. (2)
n>0
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E. Gobet - CLT for discretization errors based on stopping time sampling 2.4 Probabilistic model

P* = vector space spanned by a-homogeneous polynomial functions
RY — R

(Hsp):

1. There is a linear operator B_|.] from the vector space spanned by

P a0 =2,3,4, into scalar adapted continuous process (B:[f(-)])o<e<T
_ Bulf(a) = ol
Tr(oio])

3. 3¢g:[0,1] = R, with lim._,o(g(e) + 21" g(e)~') = 0 for some p € (0,1),
such that for any f € P* with a € {2,3,4}

2.mt: > 0

sup en Ern (f(Srp = Ser ) = Ber [FO)]| £ Cyer, as. (3)

71 <(T—g(en))+

4. e 1] (T —glen))y <7 <T} == 0.

n——+oo
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E. Gobet - CLT for discretization errors based on stopping time sampling 2.5 Main result

2.5 Main result

Theorem. Under these assumptions, there are some (explicit) random process )
and X (symmetric) and an m-dimensional Brownian motion W defined on an
extended probability space (€, F P) and independent of F7 such that the

following convergences hold:

1. the functional F-stable convergence in distribution

—18,“ (/ MSQSds+/Ot Q! AsdBy +/ J<1/2dW> (4)

2. the uniform convergence in probability

t

e2ND 2R m_ *ds. (5)

n—-+oo 0

Possible bias at the limit (specific to discretization on random times)
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E. Gobet - CLT for discretization errors based on stopping time sampling 2.6 The case of stopping times of the form

2.6 The case of stopping times of the form

r=inf{t > 7 : (S¢ —Ssn ) € enDin FA(RL, + e2Grn (Upnji)+ Ani) AT,

1

Domains assumptions:

v’ D"™: intersection of smooth C? domains sandwiched between balls (with
stochastic radius : w-ise compact). Includes stochastic polyhedrons.

v

sup (5;% sup dist( f,Dt)> < +o00.
n>0 0<t<T

v/ Appropriate measurability conditions on G and

E (Al | Frp, ) < prn o2t
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E. Gobet - CLT for discretization errors based on stopping time sampling 2.6 The case of stopping times of the form

Theorem. The CLT holds with the process/opeator m and B defined as follows:
v 7(t) :=inf{s > 0:0,W, & D;} A G(U)
v
Bf() =B (F(0Wo)), t€[0,T)
my = E(7(t)), t €[0,T),

with U ~ U(0, 1) be independent of W, both independent of Fr.
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2.7 Explicit computations in dimension 1

Consider:
vV Gi(1) = +o0
v’ Dy = (—ay, B:) C R for some adapted continuous a.s. positive processes «;, (3.
We obtain
1 A
my = oy 27 @t = §(6t — ), K = ( 1? (O‘t + Bt + ¢ Bt).

So finally we get

\/WE”: \// 045 ds /M as)d3+/t(ﬁs_aS)A8st
sMs 0
+\%/0 AS\/oz§+ﬂ§+ozsﬂde3).

We retrieve the one-dimensional result of [Fuk10, Theorem 3.1|. More general
situations in |GLS18§|.
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E. Gobet - CLT for discretization errors based on stopping time sampling 2.8 Ingredients of the proof

2.8 Ingredients of the proof

v' Application of CLT from Jacod-Shirayev, convergence in probability...

v' We switch to a.s. convergence: R 5 X, 5 X <= for any subsequence

n— —+00
(xL(n))n>07 30" s.t. :X:[,OL/(’I’L)

0, S.
X. m we can assume Y. &2 < +oo and
prove a.s. convergence

n—>—|—oo

v’ a.s. convergence of martingales [GL14[|, p > 0

Z sup |M¢|P < +ooa.s. <:>Z sup (M)P/2 < 4o0a.s.

£€[0.T] te[0,T)
“"*82 Z Hz 1ucas / Hm_ldS
et n——+oo
8721_a Z Hn | fo—l(ST{L/\t - STz'n :—C:Lcjo / Hs m_l'B £()lds
Ti 1<t

v Proof of stability estimates for exit times/position for perturbed domains

v Making the CLT characteristics "explicit"
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