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E. Gobet - CLT for discretization errors based on stopping time sampling 1.1 "Deep teaching"

1 A few examples of collaboration with Nicole
1.1 "Deep teaching"

Pricing barrier options in Nicole’s way

X Zero interest rate/zero dividend, Black-Scholes model, maturity T

X Down In Call regular (D ≤ K), payoff 1mint St≤D(ST −K)+

Pricing/hedging:

1. If S ≤ D,
DIC(S,K,D) = Call(S,K).

2. Si S > D,
DIC(S,K,D) = K

DPut
(
S, D

2

K

)

= K
DCall

(
D2

K , S
)

= Call
(
D, KSD

)
.

à Semi-static hedging

à Extension to drifted S using the power asset Spt (for suitable p)

à Direct proof for explicit distribution of (ST ,mint St)
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E. Gobet - CLT for discretization errors based on stopping time sampling 1.2 Sensitivities with respect to boundaries

1.2 Sensitivities with respect to boundaries

With C. Costantini (AMO 2006).

X X: SDE, τ = inf{s > t : (s,Xt,x
s ) /∈ D}.

X uD(t, x) = Et,x
(
g(τ,Xτ )e−

∫ τ
t
c(r,Xr)dr −

∫ τ
t
e−

∫ s
t
c(r,Xr)drf(s,Xs)ds

)

X D(ε) = {(t, x) : (t, x + εΘ(t, x)) ∈ D}, for
ε→ 0.

X0 = x ∈ Rd,

dXt = b(t, Xt)dt + σ(t, Xt)dWt.

g(τ ∧ T,Xτ∧T) +

∫ τ∧T

0

f(s,Xs)ds

τ = inf{t > 0 : Xt /∈ Dt}

(Dt)t

Rd

D0

Dt
DT

t0 T
Rd

Theorem. Let (t, x) ∈ D and set τε := inf{s > t : (s,Xt,x
s ) /∈ D(ε)}. Then the

application ε 7→ uD(ε)(t, x) is differentiable w.r.t. ε = 0 and

∂εu
D(ε)(t, x)

∣∣
ε=0

= Et,x
[
e−

∫ τ
t
c(r,Xr)dr[(∇u−∇g)Θ](τ,Xτ )

]
.

Link with the smooth-pasting property for American options.
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2 Back to the CLT paper

2.1 Model

1. S: Rd-valued Brownian semimartingale

2. Discretization of S at random stopping times τn0 = 0 < τn1 < · · · < τnNnT
= T

3. Random number of discretization times Nn
T

4. Discretization error Ent := E
n,1
t + E

n,2
t of the form

E
n,1
t :=

∑
τni−1<t

∫ τni ∧t

τni−1

Mτni−1
(Ss−Sτni−1

)ds, E
n,2
t :=

∑
τni−1<t

∫ τni ∧t

τni−1

(Ss−Sτni−1
)TAτni−1

dBs.

Everything depends on εn → 0.

Functional Central Limit Theorem (CLT) for the renormalized discretization
error process (

√
Nn
t E

n
t )0≤t≤T ?
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2.2 Applications

1. Integrated variance estimation [RR12][LZZ13][LMR+14]. Here
dSt = btdt+ σtdBt and the goal is to estimate

∫ t
0

Tr(σsσ
T
s )ds.

Estimation error
∑

τni−1<t

|∆Sτni ∧t|
2 −

∫ t

0

Tr(σsσ
T
s )ds = 2

∫ t

0

∆ST
s σsdBs + 2

∫ t

0

bTs∆Ssds.

2. Optimal tracking strategies [Fuk11b][Fuk11a][GL14][GS18a]. Minimization of
the tracking error of a continuous-times strategy:∫ t

0

v(s, Ss)dSs −
∑

τni−1<t

v(τni−1, Sτni−1
)∆Sτni ∧s ≈

∑
τni−1<t

∫ τni ∧t

τni−1

∇Sv(τni−1, Sτni−1
)∆SsdSs.

3. Parametric estimation for processes [GJ93][GS18b]. Estimation of α, β in the
drift/diffusion coefficients of SDE via minimum contrast estimators.
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E. Gobet - CLT for discretization errors based on stopping time sampling 2.3 Form of the stopping time

2.3 Form of the stopping time

X Quite general sequences of stopping times

X Combination of exit times by S of random domains and Poisson-like random
times

τni := inf{t > τni−1 : (St−Sτni−1
) /∈ εnDn

τni−1
}∧(τni−1+ε2nGτni−1

(Un,i)+∆n,i)∧T,

for some parameter εn → 0, some stochastic domains Dn
. indexed by time,

some independent random variables (Un,i)i,n, some negligible error terms
∆n,i.
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E. Gobet - CLT for discretization errors based on stopping time sampling 2.4 Probabilistic model

2.4 Probabilistic model

X (Ω,F, (F̄t)0≤t≤T ,P) supporting a d-dimensional BM (Bt)0≤t≤T

X right-continuous and P-complete filtration

(Hgen.
S ): The process S on [0, T ] given by St = At +

∫ t

0
σsdBs, where

X A ηA-Holder continous (ηA ∈ (1/2, 1]), with finite variation

X (σt)0≤t≤T ησ/2-Holder continuous adapted invertible

(HR):

1. Distance between 2 stopping times can not be large in expectation: For some
adapted continuous non-decreasing process (C

(1)
t )0≤t≤T

sup
τni−1<t≤T

(
Et(|Sτni − Sτni−1

|4) + |St∧τni − Sτni−1
|4
)
≤ C(1)

τni−1
ε4n. (1)

2. Number of stopping times cannot be too large:

C(2) := sup
n≥0

(
ε2nN

n
T

)
< +∞, a.s.. (2)
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E. Gobet - CLT for discretization errors based on stopping time sampling 2.4 Probabilistic model

Pα = vector space spanned by α-homogeneous polynomial functions
Rd 7→ R

(HB):

1. There is a linear operator B.[.] from the vector space spanned by
Pα, α = 2, 3, 4, into scalar adapted continuous process (Bt[f(·)])0≤t≤T

2. mt :=
Bt[f(x) := |x|2]

Tr(σtσT
t )

> 0

3. ∃ g : [0, 1]→ R+ with limε→0(g(ε) + ε2(1−ρ)g(ε)−1) = 0 for some ρ ∈ (0, 1),
such that for any f ∈ Pα with α ∈ {2, 3, 4}

sup
τni−1<(T−g(εn))+

∣∣∣ε−αn Eτni−1
(f(Sτni − Sτni−1

))−Bτni−1
[f(·)]

∣∣∣ ≤ C(3)ε
ρ
n a.s. (3)

4. ε−2n #{τni : (T − g(εn))+ ≤ τni ≤ T}
a.s.−→

n→+∞
0.
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E. Gobet - CLT for discretization errors based on stopping time sampling 2.5 Main result

2.5 Main result

Theorem. Under these assumptions, there are some (explicit) random process Q
and K (symmetric) and an m-dimensional Brownian motion W defined on an
extended probability space (Ω̃, F̃, P̃) and independent of F̄T such that the
following convergences hold:

1. the functional F̄-stable convergence in distribution

ε−1n En
t

d
=⇒
[0,T]

(∫ t

0

MsQsds +

∫ t

0

QT
sAsdBs +

∫ t

0

K1/2
s dWs

)
; (4)

2. the uniform convergence in probability

ε2nNn
t

u.c.p.−→
n→+∞

∫ t

0

m−1s ds. (5)

Possible bias at the limit (specific to discretization on random times)
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2.6 The case of stopping times of the form

τni := inf{t > τni−1 : (St − Sτn
i−1

) /∈ εnDn
τn
i−1
} ∧ (τni−1 + ε2nGτn

i−1
(Un,i) + ∆n,i)∧T.

Domains assumptions:

X Dn: intersection of smooth C2 domains sandwiched between balls (with
stochastic radius : ω-ise compact). Includes stochastic polyhedrons.

X

sup
n≥0

(
ε−ηDn sup

0≤t≤T
dist(Dn

t , Dt)

)
< +∞.

X Appropriate measurability conditions on G and

E
(
|∆n,i| | F̄τni−1

)
≤ pτni−1

ε2+ηn .
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E. Gobet - CLT for discretization errors based on stopping time sampling 2.6 The case of stopping times of the form

Theorem. The CLT holds with the process/opeator m and B defined as follows:

X τ(t) := inf{s ≥ 0 : σtW̃s /∈ Dt} ∧Gt(U)

X

Bt[f(·)] := Ẽt
(
f(σtW̃τ(t))

)
, t ∈ [0, T ],

mt := Ẽt(τ(t)), t ∈ [0, T ],

with U ∼ U(0, 1) be independent of W̃ , both independent of F̄T .
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E. Gobet - CLT for discretization errors based on stopping time sampling 2.7 Explicit computations in dimension 1

2.7 Explicit computations in dimension 1

Consider:

X Gt(·) ≡ +∞
X Dt := (−αt, βt) ⊂ R for some adapted continuous a.s. positive processes α, β.

We obtain

mt = αtβtσ
−2
t , Qt =

1

3
(βt − αt), Kt =

(At)
2

18
(α2
t + β2

t + αtβt).

So finally we get

√
Nn
t E

n
t

d
=⇒
[0,T ]

1

3

√∫ t

0

σ2
s

αsβs
ds
(∫ t

0

Ms(βs − αs)ds+

∫ t

0

(βs − αs)AsdBs

+
1√
2

∫ t

0

As
√
α2
s + β2

s + αsβsdWs

)
.

We retrieve the one-dimensional result of [Fuk10, Theorem 3.1]. More general
situations in [GLS18].
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2.8 Ingredients of the proof

X Application of CLT from Jacod-Shirayev, convergence in probability...

X We switch to a.s. convergence: R 3 Xn
P→

n→+∞
X⇐⇒ for any subsequence

(Xι(n))n≥0, ∃ι′ s.t. Xι◦ι′(n) a.s.→
n→+∞

X. à we can assume
∑
n ε

2
n < +∞ and

prove a.s. convergence

X a.s. convergence of martingales [GL14], p > 0
∑

n

sup
t∈[0,T]

|Mt|p < +∞a.s.⇐⇒
∑

n

sup
t∈[0,T]

〈Mt〉p/2 < +∞a.s.

à ε2n
∑

τni−1<t

Hτni−1

u.c.a.s.−→
n→+∞

∫ t

0

Hsm
−1
s ds,

ε2−αn

∑

τni−1<t

Hτni−1
fτni−1

(Sτni ∧t − Sτni−1
)
u.c.a.s.−→
n→+∞

∫ t

0

Hsm
−1
s Bs[fs(·)]ds.

X Proof of stability estimates for exit times/position for perturbed domains

X Making the CLT characteristics "explicit"
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