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”Calcul d’Itô Sans Probabilités” (Föllmer 1981)

Let X 2 C
0([0,T ],Rd) and f 2 C

2(Rd ,R). The main idea in the proof of the Ito
formula is to consider a sequence of partitions ⇡n = (0 = t

n

0 < t
n

1 .. < t
n

N(⇡n)
= T )

of [0,T ] with |⇡n| ! 0 and expand increments of f (X (t)) along the partition
using a 2nd order Taylor expansion:

f (X (t))� f (X (0)) =
X

⇡n

f (X (tn
i+1))� f (X (tn

i
))

=
X

⇡n

rf (X (tn
i
)).(X (tn

i+1)� X (tn
i
))

+
1

2
t(X (tn

i+1)� X (tn
i
))r2

f (X (tn
i
)).(X (tn

i+1)� X (tn
i
)) + r(X (tn

i+1),X (tn
i
))
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Summing over ⇡n we get

f (X (t))� f (X (0)) = S1(⇡n, f ) + S2(⇡n, f ) + R(⇡n, f )

By uniform continuity of
r(x , y) = f (y)� f (x)�rf (x).(y � x)� 1

2

t
(y � x)r2

f (x)(y � x),

r(x , y)  '(||x � y ||)||x � y ||2 with '(u)
u!0! 0

R(⇡n, f ) = ✏n
P

⇡n
kX (tn

i+1)� X (tn
i
)k2.

So both this term and the ‘quadratic Riemann sum’

S2(⇡n, f ) =
1

2

X

⇡n

t(X (tn
i+1)� X (tn

i
))r2

f (X (tn
i
)).(X (tn

i+1)� X (tn
i
))

are controlled by the convergence of (weighted) sums of squared increments
of X along ⇡n.
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Quadratic Riemann sums

For d=1: given a path of X , pointwise convergence of ‘quadratic Riemann sums’

S2(⇡n, f ) =
1

2

X

⇡n

r2
f (X (tn

i
)).(X (tn

i+1)� X (tn
i
))2

along the path for every f 2 C
2(Rd ,R) is exactly equivalent to the weak

convergence of the sequence of discrete measures

µn =
X

tj2⇡n

(X (tn
j+1)� X (tn

j
))2�tj

where �t denotes a point mass at t. This is a joint property of X and ⇡ = (⇡n)n�1.
This motivated Föllmer‘s (1981) definition of ‘pathwise quadratic variation along
a sequence of partitions.
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Quadratic variation along a partition sequence

Definition (Föllmer 1981)

Let ⇡n = (0 = t
n

0 < t
n

1 .. < t
n

N(⇡n)
= T ) be a sequence of partitions of [0,T ] with

|⇡n| ! 0. A càdlàg function x 2 D([0,T ],R) is said to have finite quadratic
variation along the sequence of partitions ⇡ = (⇡n)n�1 if the weak limit

µ := lim
n!1

X

tj2⇡n

(x(tn
j+1)� x(tn

j
))2�tj

exists and has Lebesgue decomposition given by

µ([0, t]) = [x ]c⇡(t) +
X

0<st

|�x(s)|2

where [x ]c⇡ is a continuous and increasing function. [x ]⇡(t) = µ([0, t]) is called
the quadratic variation of x along ⇡.

We denote Q⇡([0,T ],R) the set of functions with this property.
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Multidimensional paths

Q⇡([0,T ],Rd) is not a vector space (Schied 2016) so care must be taken in
defining this notion for vector valued functions:

Definition (Paths of finite quadratic variation)

x 2 Q⇡([0,T ],Rd) if, for all 1  i , j  d , x i , x i + x
j in Q⇡([0,T ],R). Then

[x ]⇡ : [0,T ] ! S
+
d

defined by

([x ]⇡)i,j (t) =
1
2

⇣
[x i + x j ]⇡(t)� [x i ]⇡(t)� [x j ]⇡(t)

⌘

= [x i , x j ]c⇡(t) +
X

0<st

�x i (s)�x j(s), i , j = 1, . . . , d

is an increasing function with values positive symmetric d ⇥ d matrices.
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Characterization

Proposition (Henry Chiu & R C (2018))

Let x 2 D([0,T ],Rd) and define

[x ]⇡n
(t) =

X

tj2⇡n

(x(tn
j+1 ^ t)� x(tn

j
^ t))t(x(tn

j+1 ^ t)� x(tn
j
^ t)) 2 S

+
d

where S
+
d

is the cone of semidefinite postive symmetricd ⇥ d matrices The

following properties are equivalent:

1 x has finite quadratic variation along the sequence of partitions (⇡n)n�1.

2 The sequence [x ]⇡n
converges in Skorokhod (J1) topology [0,T ] to (an

increasing function) [x ]⇡ 2 D([0,T ], S+
d
).

.
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Föllmer’s “pathwise Ito formula”

Proposition (Föllmer, 1981)

8f 2 C
2(Rd ,R), 8! 2 Q⇡([0,T ],Rd), the non-anticipative Riemann sums along ⇡

X

⇡n

rf (!(tn
i
)).(!(tn

i+1)� !(tn
i
))

n!1!
Z

T

0
rf (!(t)).d⇡!

converge pointwise and

f (!(t))� f (!(0)) =

Z
t

0
rf (!).d⇡! +

1

2

Z
t

0
< r2

f (!), d [!]c⇡ >

+
X

st

f (!(s))� f (!(s�))�rf (!(s�)).�!(s)
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Pathwise construction of stochastic integrals

Föllmer’s result allows to define integrals of the type
Z

rf (!(t))d! f 2 C
2(Rd ,R)

as a (pathwise) limit of (left) Riemann sums, for any path ! with finite
quadratic variation along (⇡n).

Admissible integrands are gradients of C 2 functions.

Some questions:

Extension to path-dependent integrands/ functionals? (with D Fournié, H
Chiu)

Properties of the pathwise integral: Continuity, Isometry...? (with A
Ananova)

Stability/ invariance of construction with respect to the choice of partitions?
(with P Das)

Extension to ‘rougher’ paths with non-zero higher-order variation? (with N
Perkowski)
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Invariance with respect to sequence of partitions

Joint work with Purba DAS (Oxford).

Consider two sequences of partitions ⇡, ⌧ and a continuous path
! 2 Q⇡([0,T ],Rd) \ Q⌧ ([0,T ],Rd). For all f 2 C

2(Rd),

f (!(t))� f (!(0)) =

Z
t

0
rf (!).d⇡! +

1

2

Z
t

0
< r2

f (!), d [!]⇡ >

=

Z
t

0
rf (!).d⌧! +

1

2

Z
t

0
< r2

f (!), d [!]⌧ >

The pathwise integrals are equal if and only if the quadratic variations along ⇡n

and ⌧n are equal : [!]⇡ = [!]⌧ .
Under what conditions on the path ! and the partitions is this the case?
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Invariance with respect to sequence of partitions

Unfortunately pathwise quadratic variation does depend on the sequence of
partitions...

Freedman (1983): Let ! 2 C
0([0,T ],Rd). There exists a sequence of

partitions (⇡n) such that [!]⇡ = 0.

Davis, Obloj and Siorpaes (2018): for any increasing function
A : [0,T ] ! [0,1) one can construct a sequence of partitions ⇡ = (⇡n) such
that [!]⇡(t) = A(t).

On the other hand we know that for Brownian paths, quadratic variation is
a.s. equal to t along any refining partition (Lévy 1934) and any sequence of
partitions with mesh o(1/ log n) (Dudley 1973).

So there must be a large class of functions which ’locally behave like
Brownian motion’ for which one can obtain an invariance property of
quadratic variation with respect to a (large) class of partition sequences.
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Well-balanced sequences of partitions

Let ⇡n = inf i=0..N(⇡n)�1 |tni+1 � t
n

i
|, |⇡n| = sup

i=0..N(⇡n)�1 |tni+1 � t
n

i
|

Definition

We call the sequence of partitions (⇡n)n�1 well-balanced if

9c > 0, 8n � 1,
|⇡n|
⇡n

 c . (1)

This condition means that the intervals in the partition ⇡n are asymptotically
comparable.
Since ⇡n

N(⇡n)  T , for a well-balanced sequence of partitions we have

|⇡n|  c⇡n  cT

N(⇡n)
. (2)
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Averaging lemma

If X has quadratic variation along (⇡n) then it also has quadratic variation along
any subsequence (⇡l(n)). Comparing sum of squares along (⇡n) and the
subsequence we obtain the following property:

Lemma (Cross-products of increments average to zero)

Let X 2 C
↵([0,T ],Rd) for some ↵ > 0 and �n = {tn

i
, i = 1..N(�n)} be a

well-balanced sequence of partitions of [0,T ] such that X 2 Q�([0,T ],Rd).
Let  > 1

↵ . and (�ln)n�1 by a subsequence of �n
with

N(�ln�1)  N(�n)  N(�ln).

Define for k = 1 · · ·N(�n), p(k , n) = inf{m � 1 : t
ln
m
2 (tn

k
, tn

k+1]}. Then

N(�n)X

k=1

X

p(k,n)i,jp(k+1,n)�1

✓
X (t ln

i+1)� X (t ln
i
)

◆
t
✓
X (t ln

j+1)� X (t ln
j
)

◆
! 0.
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Coarsening of a well-balanced partition

Coarsening of a partition corresponds to subsampling/ dropping points:

Definition (�-coarsening)

Let ⇡n = (0 = t
n

0 < t
n

1 .. < t
n

N(⇡n) = T ) be a well-balanced sequence of partitions

of [0,T ] with vanishing mesh |⇡n| ! 0 and 0  � < 1. A �-coarsening of ⇡ is a
sequence of subpartitions of ⇡n

A
n = (0 = t

n

p(n,0) < t
n

p(n,1) < · · · < t
n

p(n,N(An)) = T )

such that (An)n�1 is a well-balanced partition of [0,T ] and |An| ⇠ |⇡n|� .

Since |⇡n| ⌧ |An| ⇠ c |⇡n|� , as n increases the number of points of ⇡n in each
interval of An goes to infinity.
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Quadratic roughness along a sequence of partitions

Let ⇡n = (0 = t
n

0 < t
n

1 .. < t
n

N(⇡n) = T ) be a well-balanced

sequence of partitions of [0,T ] with |⇡n| ! 0.

Definition (Quadratic roughness along a sequence of partitions)

X 2 Q⇡([0,T ],Rd) is quadratically rough along ⇡ with coarsening index � < 1 if

0 < [X ]⇡ < 1 is strictly increasing

For any ��coarsening (An)n�1 of ⇡ and any t 2 (0,T ] we have:

N(An)X

j=1

X

tn
i
,tn

i02[An

j�1,A
n

j
)

�
X (tn

i+1 ^ t)� X (tn
i
^ t)

�t �
X (tn

i 0+1 ^ t)� X (tn
i 0 ^ t)

�
n!1! 0.

R
�
⇡ ([0,T ],Rd) ⇢ Q⇡([0,T ],Rd) : set of paths with quadratic roughness property
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Quadratic roughness along a sequence of partitions

Intuitively, quadratic roughness of X along (⇡n)n�1 means that the increments of
f sampled along ⇡n behave like a ‘2nd order white noise’ as we refine the partition:

N(An)X

j=1

X

tn
i
,tn

i02[An

j�1,A
n

j
)

�
X (tn

i+1 ^ t)� X (tn
i
^ t)

�t �
X (tn

i 0+1 ^ t)� X (tn
i 0 ^ t)

�
n!1! 0.

As expected, Brownian paths satisfy this property:

Proposition (Quadratic roughness of Brownian paths (C.-Das 2019))

Let W be a Wiener process, T > 0 and 0 < � < 1. Then the sample paths of W

almost-surely satisfy the quadratic roughness property with coarsening index �
along any well-balanced partition sequence with mesh o(1/(log n)1/�):

|⇡n| = o(1/(log n)1/�) ) P
�
W 2 R

�
⇡ ([0,T ])

�
= 1.
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Invariance of quadratic variation for rough functions

Our main result is that quadratic roughness implies invariance of pathwise
quadratic variation along well-balanced sequences of partitions:

Theorem (Cont & Das (2019))

Let X 2 C
↵([0,T ],Rd) \ Q�([0,T ],Rd) for some well-balanced sequence of

partitions � = (�n) of [0,T ] with lim sup |�n|/|�n+1|¡1.If x2 R
↵
� ([0,T ]) then for

any other well-balanced sequence of partitions ⌧ = (⌧n)n�1,

If x 2 Q⌧ ([0,T ],Rd) then [x ]� = [x ]⌧ .

There exists a subsequence ⇡n = ⌧ k(n) of ⌧ such that x 2 Q⇡([0,T ],Rd) and

[x ]� = [x ]⇡.
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Extension to non-anticipative Functionals

Denote !t = !(t ^ .) the past i.e. the path stopped at t.

Definition (Non-anticipative Functionals)

A causal, or non-anticipative functional is a functional
F : [0,T ]⇥ D([0,T ],Rd) 7! R whose value only depends on the past:

8! 2 ⌦, 8t 2 [0,T ], F (t,!) = F (t,!t). (3)

Causal functional= map on the space ⇤d

T
of stopped paths, defined as the

quotient space:

⇤d

T
:=

�
[0,T ]⇥ D([0,T ],Rd)

�.
⇠

where (t, x) ⇠ (t 0, x 0) $ t = t
0, xt = x

0
t
. ⇤d

T
is equipped with a metric

d1((t, x), (t 0, x 0)) = sup
u2[0,T ]

|x(u ^ t)� x
0(u ^ t

0)|+ |t � t
0|.

C
0,0(⇤d

T
) = continuous maps (⇤d

T
, d1) ! R.
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Dupire’s functional derivatives

Definition (Horizontal and vertical derivatives)

A non-anticipative functional F is said to be:

horizontally di↵erentiable at (t,!) 2 ⇤d

T
if the finite limit exists

DF (t,!) := lim
h!0+

F (t + h,!t)� F (t,!t)

h
.

vertically di↵erentiable at (t,!) 2 ⇤d

T
if the map

R
d ! R, e 7! F (t,!(t ^ .) + e1[t,T ])

is di↵erentiable at 0; its gradient at 0 is denoted by r!F (t,!).

Note that DF (t,!) is not the partial derivative in t:

DF (t,!) 6= @tF (t,!) = lim
h!0

F (t + h,!)� F (t,!)

h
.
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Smooth functionals

Definition (C
1,p
b
(⇤

d

T
) functionals)

We denote by C
1,p
b

(⇤d

T
) the set of non-anticipative functionals F 2 C

0,0
l

(⇤d

T
), such

that

F is horizontally di↵erentiable with DF continuous at fixed times,

F is p times vertically di↵erentiable with rj

!F 2 C
0,0
l

(⇤d

T
) for j = 1..p

DF ,rj

!F 2 B(⇤d

T
) for j = 1..p.

Example (Cylindrical functionals)

For g 2 C
0(Rd⇥n), h 2 C

k(Rd) with h(0) = 0. Then

F (t,!) = h (!(t)� !(tn�)) 1t�tn
g(!(t1�),!(t2�)...,!(tn�)) is C

1,k
b

DtF (!) = 0, rj

!F (t,!) = h
(j)(!(t)� !(tn�))1t�tn

g(!(t1�), ...,!(tn�))

S(⇤T ,⇡n) := simple predictable cylindrical functionals along ⇡n,
S(⇤T ,⇡) := [n>1S(⇤T ,⇡n)x
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Examples of smooth functionals

Example (Integral functionals)

For g 2 C0(Rd), Y (t) =
R
t

0 g(X (u))⇢(u)du = F (t,Xt) where

F (t,!) =

Z
t

0
g(!(u))⇢(u)du (4)

F 2 C
1,1
b

, with:

DtF (!) = g(!(t))⇢(t) rj

!F (t,!) = 0 (5)
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Functional change of variable formula: p = 2

Theorem (R.C.- Fournié ,2010)

Let ! 2 V2(⇡) \ C
0([0,T ],Rd) and !n :=

Pm(n)�1
i=0 !(tn

i+1�)1[tn
i
,tn

i+1)
+ !(T )1{T}.

Then for any F 2 C
1,2
b

(⇤d

T
), the pointwise limit of Riemann sums

TZ

0

r!F (t,!)d
⇡! := limn!1

Pm(n)�1
i=0 r!F (tni ,!

n)(!(tn
i+1)� !(tn

i
))

exists and F (T ,!) = F (0,!) +
TR

0
r!F (t,!) · d⇡!

+
TR

0
DF (t,!)dt +

TR

0

1
2 tr

�
r2

!F (t,!)d [!]
c

⇡(t)
�
.
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These result allows to construct
R .
0 r!F as a pointwise limit of non-anticipative

’Riemann sums’:

TZ

0

r!F (t,!t�) · d⇡! = lim
n!1

m(n)�1X

i=0

r!F (t
n

i
,!n)(!(tn

i+1)� !(tn
i
))

Remark

F 2 R(⇤d

T
), ! 2 C

1
2�([0,T ],Rd) ) r!F (t,!) 2 C

1
2�([0,T ],Rd).

The pathwise integral is a strict extension of the Young integral.
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Denote C
1
2�([0,T ],Rd) = \

⌫<1/2
C

⌫([0,T ],Rd)

Theorem (Pathwise Isometry formula, A. Ananova, R. C. 2016)

Let ! 2 Q⇡([0,T ],Rd) \ C
1/2�([0,T ],Rd) where |⇡n| ! 0. If F 2 C

1,2(⇤T ) is
Lipschitz-continuous and r!F 2 C

1,1
b

(⇤d

T
) then

F (.,!) 2 Q⇡([0,T ],Rd),

Z .

0
r!F (.,!).d

⇡! 2 Q⇡([0,T ],Rd)

[F (t,!)]⇡ (t) =
⇥R .

0 r!F (s,!).d⇡!
⇤⇡

(t) =
tR

0
htr!F (s,!).r!F (s,!), d [!]⇡(s)i.

This is a pathwise version of the Ito isometry formula: if we take expectations
on both sides with respect to the Wiener measure we recover the well-known Ito
isometry.
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Conditional expectations as smooth functionals

Vertical smoothness: H : (D([0,T ],R), k.k1) 7! R is vertically smooth on
continuous paths if for (t,!) 2 [0,T ]⇥ C

0([0,T ],Rd), the map

g
H(.; t,!) : e 2 R

d ! g
H(e) = H

�
! + e1[t,T ])

�
, (6)

is twice di↵erentiable at 0, with derivatives bounded in a neighborhood of 0,
uniformly with respect to (t,!) 2 [0,T ]⇥ C

0([0,T ],Rd).

Proposition (C & Riga 2016)

Let Q be the Wiener process and H : (D([0,T ],R), k.k1) 7! R be Q-integrable,

Lipschitz and vertically smooth. Then there exists F 2 C
0,2
b

(WT ) such that

F (t,Xt) = E
Q�

[H(X )|FX

t
] Q

��a.s.
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El Karoui, Jeanblanc and Shreve (1997) revisited

Proposition (Pathwise analysis of hedging strategies)

Let ! 2 Q⇡([0,T ],R+) be a strictly positive price path whose quadratic variation

[!] along ⇡ = (⇡n) is absolutely continuous.

Denote �(t,!)2 =
1

!(t)2
d [!]

dt

If there exists F 2 C
1,2(WT ) such that

F (t,!) = E [H|St = !t ]

A delta-hedging strategy for H computed in a Black-Scholes model with volatility

�0 leads to a profit/loss along the path ! given by

Z
T

0

�2
0 � �2(t,!)

2
!(t)2e

R
T

t
r(s)ds r2

!F (t,!)| {z }
�(t)

dt
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p-th variation along a sequence of partitions

Define the oscillation of S 2 C ([0,T ],R) along ⇡n as

osc(S ,⇡n) := max
[tj ,tj+1]2⇡n

max
r ,s2[tj ,tj+1]

|S(s)� S(r)|.

Definition (p-th variation along a sequence of partitions)

Let p > 0. Let S 2 C ([0,T ],R) with osc(S ,⇡n) ! 0. The sequence of measures

µn =
X

[tj ,tj+1]2⇡n

�(·� tj)|S(tj+1)� S(tj)|p

converges weakly to a measure µ without atoms () There exists a continuous
increasing function [S ]p such that

8t 2 [0,T ],
X

⇡n

|S(tj+1 ^ t)� S(tj ^ t)|p n!1! [S ]p(t).

Then [S ]p(t) := µ([0, t]) and we write S 2 Vp(⇡) and [S ]p(t) := µ([0, t]) is the
p-th variation of S along ⇡.
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p-th variation along a sequence of partitions

Lemma

Let S 2 C ([0,T ],R). S 2 Vp(⇡) if and only if there exists a continuous increasing

function [S ]p such that

8t 2 [0,T ],
X

⇡n

|S(tj+1 ^ t)� S(tj ^ t)|p n!1! [S ]p(t).

If this property holds then the convergence is uniform.
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Examples of processes with sample paths in Vp(⇡)

Paths in Vp(⇡) do not necessarily have finite p-variation.

If BH is a fractional Brownian motion BH with Hurst index H 2 (0, 1) and
⇡n = {kT/n : k 2 N0} \ [0,T ], then BH 2 V1/H(⇡) and

[BH ]1/H(t) = tE[|BH(1)|1/H ], while kBHkp�var = 1 almost surely for
p = 1/H.

Stochastic heat equation: if u(t, x) is the solution of the stochastic heat
equation with white noise on [0,T ]⇥ R then u(., x) 2 V4([0,T ]), while
ku(., x)k4�var = 1.

Reflected Brownian motion in wedge (limit process arising in queueing
theory).

R Cont Rough calculus NEK 3 X 25 30 / 46



‘Rough’ Change of variable formula

Theorem ( R.C- Perkowski (2018))

Let p 2 2N be even, S 2 Vp(⇡). Then for every f 2 C
p(R,R)

f (S(t))� f (S(0)) =

Z
t

0
< rp�1f (S), dS > +

1

p!

Z
t

0
f
(p)(S(s))d [S ]p(s),

where the integral is defined as a (pointwise) limit of compensated Riemann sums:

Z
t

0
rp�1f � S .dS :=

Z
t

0
< rp�1f (S)(u), dS(u) >

= lim
n!1

X

⇡n

p�1X

k=1

f
(k)(S(tj))

k!
(S(tj+1 ^ t)� S(tj ^ t))k

In particular we construct a pathwise Ito-type integral + change of variable
formula for FBM with any Hurst exponent.
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Pathwise integral

The pathwise integral

Z
t

0
< rp�1f � S , dS >:= lim

n
Rp�1(f , S ,⇡n)

is a pointwise limit of compensated Riemann sums

Rp�1(f , S ,⇡n) =
X

⇡n

p�1X

k=1

f
(k)(S(tj))

k!
(S(tj+1 ^ t)� S(tj ^ t))k

It should be really seen as an integral of the (p � 1)�jet rp�1f of f

rp�1f (x) = (f (k)(x), k = 0, 1, ..., p � 1)

with respect to a di↵erential structure of order p � 1 constructed along S 2 Vp(⇡)
using the powers of increments up to order p � 1.
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Isometry formula for the pathwise integral

The following result extends the pathwise isometry formula obtained in
(Ananova-C. 2017) for p = 2:

Theorem (Isometry formula (C.-Perkowski 2018))

Let p 2 2N be an even integer, (⇡n) a sequence of partitions with mesh size going

to zero, and S 2 Vp(⇡)\C
↵([0,T ],R) for some ↵ > 0. Then for any f 2 C

p(Rd),

f � S 2 Vp(⇡)

Z .

0
rp�1f dS :=

Z .

0
< rp�1f (S), dS >2 Vp(⇡)

[f (S)]p(T ) = [

Z .

0
rp�1f dS ]p(T ) =

Z
T

0
|f 0(S)|pd [S ]p = kf 0 � Skp

Lp([0,T ],d [S]p).
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Pathwise local time of order p

Definition (Local time of order p)

Let p 2 N be an even integer and let q 2 [1,1]. A continuous path
S 2 C ([0,T ],R) has an L

q
-local time of order p� 1 along a sequence of partitions

⇡ = (⇡n)n�1 if osc(S ,⇡n) ! 0 and

L
⇡n,p�1
t (·) =

X

tj2⇡

1LS(tj^t),Stj+1^tK(·)|S(tj+1 ^ t)� ·|p�1

converges weakly in L
q(R) to a weakly continuous map L : [0,T ] ! L

q(R) which
we call the order p local time of S . We denote Lq

p
(⇡) the set of continuous paths

S with this property.

Intuitively, the limit Lt(x) then measures the rate at which the path S

accumulates p-th order variation near x .
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Theorem (Higher order Tanaka-Wuermli formula)

Let p 2 2N be an even integer, q 2 [1,1] with conjugate exponent

q
0 = q/(q � 1). Let f 2 C

p�1(R,R) and assume that f
(p�1)

is weakly

di↵erentiable with derivative in L
q
0
(R). Then for any S 2 Lq

p
(⇡)

Z
t

0
rp�1f � SdS := lim

n!1

X

[tj ,tj+1]2⇡n

p�1X

k=1

f
(k)(S(tj))

k!
(S(tj+1 ^ t)� S(tj ^ t))k

exists and the following change of variable formula holds:

f (S(t))� f (S(0)) =

Z
t

0

< rp�1f � S , dS > +
1

(p � 1)!

Z

R
f (p)(x)Lt(x)dx .
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Multidimensional paths: Symmetric tensors

A symmetric p-tensor T on R
d is a p-tensor invariant under any permutation

� 2 Sp of its arguments: for (v1, v2, . . . , vp) 2 (Rd)p

�T (v1, . . . , vp) := T (v�1, v�2, . . . , v�p) = T (v1, v2, . . . , vp)

The space Sym
p
(Rd) of symmetric tensors of order p on R

d is naturally
isomorphic to the dual of the space Hp[X1, ...,Xd ] of homogeneous polynomials of
degree p on R

d .

Sp(R
d) =

pM

k=0

Sym
k
(Rd).

For any p-tensor T we define the symmetric part

Sym(T ) :=
1

p!

X

�2Sk

�T 2 Sym
p
(Rd)

where Sp of {1, . . . , k} is the group of permutations of {1, 2, ..., p}
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Extension to multidimensional functions

Consider now a continuous R
d -valued path S 2 C ([0,T ],Rd) and a sequence of

partitions ⇡n = {tn0 , . . . , tnN(⇡n)
} with t

n

0 = 0 < ... < t
n

k
< ... < t

n

N(⇡n)
= T . Then

µn =
X

⇡n

(S(tj+1)� S(tj))⌦ ...⌦ (S(tj+1)� S(tj))| {z }
p times

�(·� tj)

defines a tensor-valued measure on [0,T ] with values in Sym
p
(Rd). This space of

measures is in duality with the space C ([0,T ],Hp[X1, ...,Xd ]) of continuous
functions taking values in homogeneous polynomials of degree p i.e. homogeneous
polynomials of degree p with continuous time-dependent coe�cients.
This motivates the following definition:
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Definition (p-th variation of a multidimensional function)

Let p 2 2N be an (even) integer, and S 2 C ([0,T ],Rd) a continuous path and
⇡ = (⇡n)n�1 a sequence of partitions of [0,T ]. S 2 C ([0,T ],Rd) is said to have a
p-th variation along ⇡ = (⇡n)n�1 if osc(S ,⇡n) ! 0 and the sequence of
tensor-valued measures

µn

S
=

X

⇡n

(S(tj+1)� S(tj))
⌦p �(·� tj)

converges to a Sym
p
(Rd)-valued measure µS without atoms in the following

sense: 8f 2 C ([0,T ],Sp(Rd)),

< f , µn >=
P

⇡n
< f (tj), (S(tj+1)� S(tj))⌦p > !n!1 < f , µS > . (7)

We write S 2 Vp(⇡) and call [S ]p(t) := µ([0, t]) the p-th variation of S .
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Theorem (Rough change of variable formula: multi-dim case)

Let p 2 2N be an even integer, let (⇡n) be a sequence of partitions of [0,T ] and
S 2 Vp(⇡) \ C ([0,T ],Rd). Then for every f 2 C

p(R,R) the limit of compensated

Riemann sums

Z
t

0

< rp�1f � S , dS >:= lim
n!1

X

⇡n

p�1X

k=1

1
k!

< rk f (S(tj)), (S(tj+1 ^ t)� S(tj ^ t))⌦k >

exists for every t 2 [0,T ] and satisfies

f (S(t))� f (S(0)) =

Z
t

0
< rp�1f � S , dS > +

1

p!

Z
t

0
< rp

f (S(t))), d [S ]p(u) > .
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Functional change of variable formula: general case

Theorem (C.- Perkowski, 2018)

Let p 2 2N F 2 C
1,p
b

(⇤T ), and S 2 Vp(⇡) for a sequence of partitions (⇡n) with

|⇡n| ! 0. Then the limit
R
t

0 < Tp�1F (., S), dS >=

lim
n!1

X

[tj ,tj+1]2⇡n

p�1X

k=1

1

k!
rk

!F (tj , S
n

tj�)(S(tj+1 ^ t)� S(tj ^ t))k , exists and

F (t, St) = F (0, S0) +

Z
t

0
DF (s, Ss)ds

+
R
t

0 < Tp�1F (., S), dS > + 1
p!

R
t

0 rp

!F (s, Ss)d [S ]
p(s)

This extends the pathwise integral to all ‘closed (p � 1) forms’:
Tp�1C

1,p
b

:= {Tp�1F , F 2 C
1,p
b

(⇤T )}
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A higher order isometry formula

The following result extends the isometry formula for the pathwise integral
obtained in the case p = 2 by (Ananova-C. 2017):

Theorem (Isometry formula)

Let p 2 N be an even integer, (⇡n) a sequence of partitions with mesh size going

to zero, and S 2 Vp(⇡) \ C
↵([0,T ],R) with ↵ > ((1 + 4

p
)1/2 � 1)/2. Let

F 2 C
1,p
b

(⇤T ) \ Lip(⇤T , d1) be such that r!F 2 C
1,p�1
b

(⇤T ). Then

F (·, S) 2 Vp(⇡),

Z .

0
Tp�1F (·, S)dS 2 Vp(⇡) and

[

Z .

0
Tp�1F (·, S)dS ]p(t) =

Z
t

0
|r!F (s, S)|pd [S ]p(s) = kr!F (., S)kpLp([0,T ],d [S]p).
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Rough-smooth decomposition

‘Signal+noise’ decomposition for smooth functionals of a rough process:

Theorem (Rough-smooth decomposition: general case)

Let p 2 N be an even integer, let ↵ > ((1 + 4
p
)1/2 � 1)/2, and let

S 2 Vp(⇡) \ C
↵([0,T ],R) be a path with strictly increasing p-th variation [S ]p

along (⇡n). Then any X 2 C
1,p
b

(S) admits a unique decomposition

9!� 2 Tp�1C
1,p
b

, X = X (0) + A+

Z
t

0
< � � S , dS >

where � is a closed (p � 1)-form and [A]p = 0.

For S martingale, p = 2 this is a ‘Doob Meyer’ decomposition. However our
formulation is strictly pathwise/ non-probabilistic.

Such pathwise decompositions were obtained in the rough path setting by
Hairer & Pillai (2013), Friz & Shekhar (2013).
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Relation with ‘rough path integration’

Define a control function as a continuous map c : �T ! R+ such that
c(t, t) = 0 and c(s, u) + c(u, t)  c(s, t).

Definition (Reduced rough path of order p)

Let p � 1. A reduced rough path of finite p-variation is a map
X = (1,X1, . . . ,Xbpc) : �T �! Sbpc(R

d),
such that

bpcX

k=1

|Xk

s,t |p/k  c(s, t), (s, t) 2 �T ;

for some control function c and the reduced Chen relation holds

Xs,t = Sym(Xs,u ⌦ Xu,t), (s, u), (u, t) 2 �T .
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A canonical reduced rough path for S 2 Vp(⇡)

Lemma

Let p � 1, S 2 C ([0,T ],Rd) \ Vp(⇡) where

⇡n = (tn
k
), t

n

0 = 0, t
n

k+1 = inf{t 2 [tn
k
,T ], |S(t)� S(tn

k
)| � 2�n}.

Then for any q > p with bqc = bpc we obtain a reduced rough path of finite

q-variation by setting X
0
s,t(S) := 1,

X
k

s,t(S) :=
1

k!
(S(t)� S(s))⌦k , k = 1, . . . , bpc � 1,

X
bpc
s,t (S) :=

1

bpc! (S(t)� S(s))⌦bpc � 1

bpc! ([S ]
p(t)� [S ]p(s)).

Furthermore X : S 7! X is a non-anticipative functional.
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Proposition

Let p � 1, let X be a reduced rough path of finite p-variation and let

Y 2 Dbpc/p
X ([0,T ]). Then the ‘rough path integral’

IX(Y )(t) =

Z
t

0
hY (s), dX(s)i = lim

⇡2⇧([0,t])
|⇡|!0

X

[tj ,tj+1]2⇡

bpcX

k=1

hY k(tj),X
k

tj ,tj+1
i,

defines a function in C ([0,T ],R), and it is the unique function with IX(Y )(0) = 0
for which there exists a control function c with

���
Z

t

s

hY (r), dX(r)i �
bpcX

k=1

hY k(s),Xk

s,ti
��� . c(s, t)

bpc+1
p , (s, t) 2 �T .
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Pathwise integral as canonical rough integral

Proposition (C- Perkowski 2018)

Let p 2 2N be an even integer, S 2 Vp(⇡) and X the canonical reduced rough

path of order p associated to S , defined above. Then

Z
t

0
hrf (S(s)), dX(s)i

| {z }
Rough integral

=

Z
t

0
hrp�1f (S), dSi

| {z }
Pathwise integral

,

where the right hand side is the pathwise integral defined as a limit of

compensated Riemann sums.
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