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L’auteur montre que le calcul d’It6 peut se faire trajectoire par trajectoire, a 'aide
des sommes de Riemann par rapport a une classe de fonctions réelles a variation
quadratique, z(t), continues a droite et pourvues de limites a gauche.

Il établit que si les mesures m,, =}, . (z(tis1) — 2(t;))?e, on les (t;) appartien-
nent a une subdivision 7,, dont le pas tend vers 0 avec n, convergent vaguement vers
une mesure de fonction de répartition notée [z, z]; de partie discontinue ) __,(z(s)—

z(s—))?, la formule d’It6 habituelle est vraie pour une fonction F' de classe C2. 11 lui
suffit ensuite de montrer que pour une semimartingale les trajectoires sont p.s. a vari-
ation quadratique pour une subdivision bien choisie, pour établir la formule d’It6 en
toute généralité. Nicole El Karoui
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-
" Calcul d'lt6 Sans Probabilités” (Follmer 1981)

Let X € C°([0, T],RY) and f € C?(R? R). The main idea in the proof of the Ito
formula is to consider a sequence of partitions 7, = (0 = t§ < t].. < t,’\’,(m) =T)
of [0, T] with |m,| — 0 and expand increments of f(X(t)) along the partition
using a 2nd order Taylor expansion:

=) VAX(E)(X(H) — X(2]))

+%t(X(tf"+1) = X(7)V2EX(EN)-(X () = X(87) + r(X(t741), X(2))
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Summing over 7, we get

f(X(t)) — f(X(0)) = Si(mp, f) + So(mn, f) + R(7n, f)

@ By uniform continuity of
r(x,y) = f(y) = F(x) = VF(x)-(y = x) = 3" (y = ) V2F(x)(y — ),

u—0

r(x,y) < e(llx = yIDlIx — y|> with ¢(u) 30

R(mn, £) = en 32, IX(211) — X ()]
@ So both this term and the ‘quadratic Riemann sum’

Sa(mn, f) = % D (X(thy) = X(E)VAAX ()X (811) = X(2)

Tn

are controlled by the convergence of (weighted) sums of squared increments
of X along .
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Quadratic Riemann sums

For d=1: given a path of X, pointwise convergence of ‘quadratic Riemann sums’
2(n, f ZVQ (X(thyy) = X())?

along the path for every f € C2(R?,R) is exactly equivalent to the weak
convergence of the sequence of discrete measures

o= > (X(841) — X(£))26,

tiemn

where §; denotes a point mass at t. This is a joint property of X and 7 = (mp)n>1.
This motivated Follmer's (1981) definition of ‘pathwise quadratic variation along
a sequence of partitions.
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Quadratic variation along a partition sequence

Definition (Follmer 1981)

Let mp = (0 =tg < t{.. < t§,) = T) be a sequence of partitions of [0, T] with
|7a| — 0. A cadlag function x € D([0, T],R) is said to have finite quadratic
variation along the sequence of partitions m = (m,)n>1 if the weak limit

K= nlL”go Z = x(t))?,
IS

exists and has Lebesgue decomposition given by
w((0,6]) = (X (6) + Y |Ax(s)?
0<s<t

where [x]$ is a continuous and increasing function. [x].(t) = p([0, t]) is called
the quadratic variation of x along .

We denote Q-([0, T],R) the set of functions with this property.
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Multidimensional paths

Q- ([0, T],RY) is not a vector space (Schied 2016) so care must be taken in
defining this notion for vector valued functions:

Definition (Paths of finite quadratic variation)
x € Q:([0, T],RY) if, forall 1 < i,j < d, x',x" +x/ in Q([0, T],R). Then
[x]x : [0, T] = S defined by
(W) (0) = 5 (I 4 21a(8) — ¥12(0) — ¥ (0)
= X+ D AX(s)AX(s), ij=1,....d

0<s<t

is an increasing function with values positive symmetric d x d matrices.
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Characterization

Proposition (Henry Chiu & R C (2018))
Let x € D([0, T],R?) and define

X, (8) = D0 (x(tfg A ) = x (8 A ) (x(tag A 8) = x(8] At)) € S5

i€y
where Sj is the cone of semidefinite postive symmetricd X d matrices The
following properties are equivalent:

@ x has finite quadratic variation along the sequence of partitions (,)p>1.

@ The sequence [x],, converges in Skorokhod (J;) topology [0, T] to (an
increasing function) [x]. € D([0, T], S).

Rough calculus NEK 3 X 25 8 /46



Follmer's “pathwise Ito formula”

Proposition (Follmer, 1981)

vf € C?(R4,R),Vw € Q([0, T],RY), the non-anticipative Riemann sums along

Zw t7).(w(th 1) — H"’/ V(w(t)).d™w

converge pointwise and

F(w(t)) — F(w(0)) = / V(w).d™w + = /0 < V2f(w), d[w] >
+ 3w s—)) — Vi(w(s—))-Aw(s)

s<t

Rough calculis NEK3X25 946



Pathwise construction of stochastic integrals
@ Follmer's result allows to define integrals of the type
/Vf(w(t))dw f e C(RYR)

as a (pathwise) limit of (left) Riemann sums, for any path w with finite
quadratic variation along (7).

o Admissible integrands are gradients of C? functions.
Some questions:
@ Extension to path-dependent integrands/ functionals? (with D Fournié, H
Chiu)
@ Properties of the pathwise integral: Continuity, Isometry...? (with A
Ananova)

@ Stability/ invariance of construction with respect to the choice of partitions?
(with P Das)

e Extension to ‘rougher’ paths with non-zero higher-order variation? (with N
Perkowski)
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Invariance with respect to sequence of partitions

Joint work with Purba DAS (Oxford).

Consider two sequences of partitions 7,7 and a continuous path
w € Q([0, T],RY) N Q. ([0, T],RY). For all f € C%(RY),

F(w(t)) — F(w(0)) :/0 V(w).d"w + %/0 < V2f(w), d[w], >

1

:/0 Vi(w).dw + 5/0 < ViH(w), dw]- >

The pathwise integrals are equal if and only if the quadratic variations along 7"
and 7" are equal : [w], = [wW];.
Under what conditions on the path w and the partitions is this the case?
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Invariance with respect to sequence of partitions

Unfortunately pathwise quadratic variation does depend on the sequence of
partitions...

o Freedman (1983): Let w € C°([0, T],R9). There exists a sequence of
partitions (7") such that [w], = 0.

@ Davis, Obloj and Siorpaes (2018): for any increasing function
A: [0, T] — [0,00) one can construct a sequence of partitions 7 = (7") such
that [w].(t) = A(t).

@ On the other hand we know that for Brownian paths, quadratic variation is
a.s. equal to t along any refining partition (Lévy 1934) and any sequence of
partitions with mesh o(1/ log n) (Dudley 1973).

@ So there must be a large class of functions which 'locally behave like
Brownian motion’ for which one can obtain an invariance property of
quadratic variation with respect to a (large) class of partition sequences.
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Well-balanced sequences of partitions

Let " = infi—o n(xr)—1 [ty — £,

™| = SUPj=0..N(xm)—1 |t,n+1 —t7|
Definition
We call the sequence of partitions (7"),>1 well-balanced if

|7

|

dc >0, Vn>1, <ec. (1)

,n-n

This condition means that the intervals in the partition 7" are asymptotically
comparable.

Since 7"N(7") < T, for a well-balanced sequence of partitions we have

n n cT

Rough calculus NEK 3 X 25 13 / 46
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Averaging lemma
If X has quadratic variation along (7") then it also has quadratic variation along

any subsequence (7/("). Comparing sum of squares along (7") and the
subsequence we obtain the following property:

Lemma (Cross-products of increments average to zero)

Let X € C*([0, T],RY) for some a > 0 and 0" = {tI',i = 1..N(0,,)} be a
well-balanced sequence of partitions of [0, T| such that X € Q,([0, T],RY).
Let k> L. and (0"),>1 by a subsequence of o" with

N(o"=1) < N(o")" < N(o).

Define for k =1---N(c"), p(k,n) =inf{m >1: th € (tf,t7,1]}. Then

> 1(X(ff'11)X(t,-'"))t( (JH)fX(t’")) 0.

k=1 p(k,n)<ij<p(k+1,n)—

N(o™)

R Cont Rough calculus NEK 3 X 25 14 / 46
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Coarsening of a well-balanced partition

Coarsening of a partition corresponds to subsampling/ dropping points:

Definition (/3-coarsening)

Let 7" =(0=tf <t]..< tN(ny = T) be a well-balanced sequence of partitions
of [0, T] with vanishing mesh |7"| — 0 and 0 < 8 < 1. A [-coarsening of 7 is a
sequence of subpartitions of 7"

A" = (0= thn0) <ty < < tyanian) = T)
such that (A"),>1 is a well-balanced partition of [0, T] and |A"| ~ |7"|%.

Since |m"| < |A"| ~ c|n"|?, as n increases the number of points of 7" in each
interval of A" goes to infinity.
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Quadratic roughness along a sequence of partitions

Let " = (0 = tg < tf.. < tf,m) = T) be a well-balanced
sequence of partitions of [0, T] with |7"| — 0.

Definition (Quadratic roughness along a sequence of partitions)

X € @:([0, T],R?) is quadratically rough along 7 with coarsening index 3 < 1 if
@ 0 < [X]x < oo is strictly increasing
o For any S—coarsening (A")p>1 of ™ and any t € (0, T] we have:

N(A™)
> Y (X(Ean) =X AD) (XA =X A1) "0,
J=1 et elAr_ | AT)

RA([0, T],RY) C @ ([0, T],RY) : set of paths with quadratic roughness property

Rough calculis NEK3X25 1646
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Quadratic roughness along a sequence of partitions

Intuitively, quadratic roughness of X along (7"),>1 means that the increments of
f sampled along 7" behave like a ‘2nd order white noise’ as we refine the partition:

N(A")
SN (XM At = X A) (X(thg At) = X(£8 A ) "0,
J=1 t, 1 €[A7 A7)

As expected, Brownian paths satisfy this property:

Proposition (Quadratic roughness of Brownian paths (C.-Das 2019))

Let W be a Wiener process, T > 0 and 0 < 8 < 1. Then the sample paths of W
almost-surely satisfy the quadratic roughness property with coarsening index (3
along any well-balanced partition sequence with mesh o(1/(log n)*/?):

17" = o(1/(log n)/#) = P (W € RZ([0, T]) ) = 1.

R Cont Rough calculus NEK 3X25 17 /46



Invariance of quadratic variation for rough functions

Our main result is that quadratic roughness implies invariance of pathwise
quadratic variation along well-balanced sequences of partitions:

Theorem (Cont & Das (2019))

Let X € C*([0, T],RY) N Q,([0, T],RY) for some well-balanced sequence of
partitions o = (o) of [0, T| with limsup |o"|/|c™|joc.lf xe R%([0, T]) then for
any other well-balanced sequence of partitions T = (T")n>1,
o Ifx € Q. ([0, T],RY) then [x]» = [X],.
o There exists a subsequence 7" = K" of 7 such that x € Q.([0, T],RY) and
[Xle = [x]r-

R Cont Rough calculus NEK 3X25  18/46



Extension to non-anticipative Functionals

Denote w; = w(t A.) the past i.e. the path stopped at t.

Definition (Non-anticipative Functionals)

A causal, or non-anticipative functional is a functional
F : [0, T] x D([0, T],R?) — R whose value only depends on the past:

YweQ, Vtelo,T], F(t,w) = F(t,w:). 3)

Causal functional= map on the space /\‘} of stopped paths, defined as the
quotient space:

NG = ([0, T] x D(o, TLRY) / ~
where (t,x) ~ (t',x") <> t = t/,x, = x{. A% is equipped with a metric

doo((t,x), (t',x")) = sup |x(unt)—x'(unt)+|t—1]
u€l0,T]

C%0(A4) = continuous maps (A%, d,) — R.
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Dupire's functional derivatives

Definition (Horizontal and vertical derivatives)

A non-anticipative functional F is said to be:

o horizontally differentiable at (t,w) € A% if the finite limit exists

DF(t,w) = lim F(t+h’wf/)7_F(t7wt).

e vertically differentiable at (t,w) € A4 if the map
R >R, e F(t,w(tA.) + el 7)
is differentiable at 0; its gradient at O is denoted by V,,F(t,w).
Note that DF(t,w) is not the partial derivative in t:

F(t+ h,w) — F(t,w)
5 .

DF(t,w) # 0:F(t,w) = ’I1im0
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Smooth functionals

Definition (C,;”(A9) functionals)

We denote by C})’P(/\C}) the set of non-anticipative functionals F € C?’O(/\c%), such
that

@ F is horizontally differentiable with DF continuous at fixed times,

e F is p times vertically differentiable with V/ F € C?’O(/\‘}) forj=1..p

o DF,V/,F € B(AY) for j = 1..p.

Example (Cylindrical functionals)
For g € CO(R?*"), h € CX(RY) with h(0) = 0. Then

F(t,w) = h(w(t) —w(ta—)) lese, glw(ti=),w(te—)..,w(t,—))  is Cy*
DF(w) =0, VI F(t,w)=hD(w(t)— wW(th—=))1lese,8(w(t1—), .., w(tn—))
S(At,m,) := simple predictable cylindrical functionals along 7,

S(ATvﬂ-) = L-Jn>ls(/\-l—77-rn)x
i el NEK3X25 2146



Examples of smooth functionals

Example (Integral functionals)

For g € Go(RY), Y(t) = [ g(X(u))p(u)du = F(t, X;) where

F(t,w) = /0 g(w(u))p(u)du
F € Cy™, with:

D:F(w) = g(w(t)p(t)  VLF(t,w)=0

Rough calculis

NEK 3 X 25
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Functional change of variable formula: p = 2

Theorem (R.C.- Fournié ,2010)

Let w € Va(m) N CO([0, T],RY) and w” := "0 w(tf 1 —)jer.er ) +w(T) 1y

1
Then for any F € C}*(A%), the pointwise limit of Riemann sums

.
/ VuF(t,w)d™w = limy e MG F (87, 0" (w(th 1) — w(t))
0
;
exists and  F(T,w) = F(0,w) + [V F(t,w)  d™w
0
T T
+  [DF(t,w)dt + [ 3tr (V2F(t,w)d[w]s(t)).
0 0
Rough calculus
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These result allows to construct fo V. F as a pointwise limit of non-anticipative
'Riemann sums’:

T m(n)—1
/VwF(t,wt_) cdTw = n|i>n;o Z Vo F(t, W) (w(tlq) — w(t]))
0 i=0

Remark

F e R(A%), we C:([0, T],RY) = V,F(t,w) e Cz=([0, T],RY).

The pathwise integral is a strict extension of the Young integral.

R Cont Rough calculus NEK 3X25 24 /46



Denote C%_([O7 TI,RY) = n c¥([o, T],RY)
v<1/2

Theorem (Pathwise Isometry formula, A. Ananova, R. C. 2016)

Let w € Q([0, T],RY) N C1/2=([0, T],RY) where [x"| — 0. If F € C12(Ay) is
Lipschitz-continuous and V,F € Cp (%) then

F(.,w) € Qu(]0, TI,RY), /0 VoF(,w).d™w € Qx([0, TI,RY)

[F(t, )™ (1) = [[5 Ve mw] " ( { F(s,w)-VoF(s,w), d[w]™(s))-

This is a pathwise version of the Ito isometry formula: if we take expectations
on both sides with respect to the Wiener measure we recover the well-known lto
isometry.
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Conditional expectations as smooth functionals

Vertical smoothness: H : (D([0, T], R),|.||s) + R is vertically smooth on
continuous paths if for (t,w) € [0, T] x C°([0, T],R?), the map

g'itw)ieeRY = glle)=H (w+elpn)). (6)

is twice differentiable at 0, with derivatives bounded in a neighborhood of 0,
uniformly with respect to (t,w) € [0, T] x C°([0, T],R9).

Proposition (C & Riga 2016)
Let Q be the Wiener process and H : (D([0, T], R), ||.|lcc) — R be Q-integrable,

Lipschitz and vertically smooth. Then there exists F € C)>(Wr) such that
F(t,X:) = EQ[H(X)|F¥] Q7 —a.s.
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El Karoui, Jeanblanc and Shreve (1997) revisited

Proposition (Pathwise analysis of hedging strategies)

Let w € Q:([0, T],Ry) be a strictly positive price path whose quadratic variation
[w] along ™ = () is absolutely continuous.

dw]

w(t)? dt

Denote o(t,w)? =

If there exists F € C12(Wr) such that
F(t,UJ) = E[H|St = Wt]

A delta-hedging strategy for H computed in a Black-Scholes model with volatility
oo leads to a profit/loss along the path w given by

T 2 2
/ %0 =0 8) 120l 1% 2 F (1, w) dit
0 2 N—
r(t)

R Cont Rough calculus NEK 3X25 27 /46
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p-th variation along a sequence of partitions

Define the oscillation of S € C([0, T],R) along 7, as

osc(S,mp) == max max _|S(s) — S(r)|.
[tj,tia]€mn ris€[ty tj11]

Definition (p-th variation along a sequence of partitions)

Let p > 0. Let S € C([0, T],R) with osc(S,m,) — 0. The sequence of measures

p= Y 6= )IS(ta) - S()IP
[tivtj+1]€77n
converges weakly to a measure p without atoms <= There exists a continuous

increasing function [S]P such that

VEE[, Tl D IS(tira At) = S(t A )P SIP(t).

Then [S]P(t) := p([0, t]) and we write S € V,,(7) and [S]P(t) := (][0, t]) is the
p-th variation of S along .
Rough calculus NEK 3 X 25 28 / 46



p-th variation along a sequence of partitions

Lemma

Let S € C([0, T],R). S € V,(w) if and only if there exists a continuous increasing
function [S]P such that

VEE[0,T], D IS(tisaAt) = St AP TSIP().

If this property holds then the convergence is uniform.

Rough calculis NEK3X25 2046
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Examples of processes with sample paths in V()

Paths in V,(7) do not necessarily have finite p-variation.

e If By is a fractional Brownian motion By with Hurst index H € (0,1) and
7, = {kT/n:k €No} N[0, T], then By € Vi,y(7) and
[Bu]*/H(t) = tE[|Bu(1)[*"], while ||Bu||p—var = o0 almost surely for
p=1/H.

o Stochastic heat equation: if u(t, x) is the solution of the stochastic heat
equation with white noise on [0, T] x R then u(.,x) € V4([0, T]), while
[[u(., X)[l4—var = o0.

o Reflected Brownian motion in wedge (limit process arising in queueing
theory).

R Cont Rough calculus NEK 3X25  30/46



‘Rough’ Change of variable formula

Theorem ( R.C- Perkowski (2018))
Let p € 2N be even, S € V,(m). Then for every f € CP(R,R)

t 1 t
FS() = F(SO) = | < Vpaf().d5 > +— [ FAA(S(s)dISIP(s)
0 *Jo
where the integral is defined as a (pointwise) limit of compensated Riemann sums:

t t
Vp_1f05.dS ::/ < Vp-1f(S)(u), dS(u) >
0 0

anZkW” S(tia A1) — S(t A £)F

In particular we construct a pathwise Ito-type integral + change of variable
formula for FBM with any Hurst exponent.

R Cont Rough calculus NEK 3X25  31/46
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Pathwise integral

The pathwise integral
t
/ < Vp_1f05,dS >:=IlimRy_1(f, S, m,)
0 n
is a pointwise limit of compensated Riemann sums
Ro—1(f,S,mn) ZZ (5(t,+1/\t) S(t A t))*

It should be really seen as an integral of the (p — 1)—jet V,_1f of f
Vpaf(x) = (F9(x),k=0,1,...p— 1)

with respect to a differential structure of order p — 1 constructed along S € V,(7)
using the powers of increments up to order p — 1.
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Isometry formula for the pathwise integral

The following result extends the pathwise isometry formula obtained in
(Ananova-C. 2017) for p = 2:

Theorem (Isometry formula (C.-Perkowski 2018))

Let p € 2N be an even integer, (7,) a sequence of partitions with mesh size going
to zero, and S € V,(7) N C*([0, T],R) for some a > 0. Then for any f € CP(RY),

foSe V,(n) / V,_if dS = / < V,_1f(5),dS >€ V,(x)
0 0

]
FSIPT) = [ Torf dSP(T) = [ 1F(S)PASP = 17 SIEogo sy

Rough calculus NEK 3 X 25 33 /46
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Pathwise local time of order p

Definition (Local time of order p)

Let p € N be an even integer and let g € [1,00]. A continuous path
S e C([0, T],R) has an L9-local time of order p — 1 along a sequence of partitions
7 = (mp)n>1 if 0sc(S,m,) — 0 and

LEPTH) = D Yysgneys,, ad (IS(Ga AE) =777

tiem

converges weakly in L9(R) to a weakly continuous map L: [0, T] — L9(R) which
we call the order p local time of S. We denote L3() the set of continuous paths
S with this property.

Intuitively, the limit L¢(x) then measures the rate at which the path S
accumulates p-th order variation near x.

R Cont Rough calculus NEK 3 X 25 34 /46



Theorem (Higher order Tanaka-Wuermli formula)

Let p € 2N be an even integer, q € [1, 00] with conjugate exponent
q =q/(qg—1). Let f € CP~Y(R,R) and assume that f(P=1) is weakly
differentiable with derivative in L9 (R). Then for any S € L](m)

t
/0 Vp-1f 0 5dS = lim_ > Z (5(1.;+1 At) —S(t A t))*

[t talemn k=1

exists and the following change of variable formula holds:

£(S(t)) — £(5(0)) = /Ot <Vp.1foS,dS > +F11)! /R FP) (x)Le(x)dx.

Rough calculus NEK 3 X 25 35 /46
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Multidimensional paths: Symmetric tensors
A symmetric p-tensor T on RY is a p-tensor invariant under any permutation
o € &, of its arguments: for (v1,va,...,v,) € (RY)P
oT (i, Vp) = T(Vo1,Vo2s -, Vop) = T(Vi, va,...,Vp)
The space Symp(Rd) of symmetric tensors of order p on RY is naturally
isomorphic to the dual of the space H,[Xi, ..., Xg] of homogeneous polynomials of
degree p on RY.
P
Sp(R?) = @B Sym, (RY).
k=0

For any p-tensor T we define the symmetric part

Sym(T) := ll > oT € Sym,(R)

T 0EG

where &, of {1,..., k} is the group of permutations of {1,2,..., p}

R Cont Rough calculus NEK 3X25  36/46



Extension to multidimensional functions

Consider now a continuous R9-valued path S € C([0, T],R9) and a sequence of
partitions 7w, = {t§,..., t,’(,(m)} withtf =0<..<t] <..< t,’\’,(m) = T. Then

p" = (S(tiy1) = S(4) ® ... @ (S(tjs1) — S(4)) (- — )

Tn

p times

defines a tensor-valued measure on [0, T] with values in Sym,(R?). This space of
measures is in duality with the space C([0, T],H,[Xi, ..., Xg]) of continuous
functions taking values in homogeneous polynomials of degree p i.e. homogeneous
polynomials of degree p with continuous time-dependent coefficients.

This motivates the following definition:
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Definition (p-th variation of a multidimensional function)

Let p € 2N be an (even) integer, and S € C([0, T],RY) a continuous path and

7 = (my)n>1 @ sequence of partitions of [0, T]. S € C([0, T],R?) is said to have a
p-th variation along m = (m,)n>1 if 0sc(S, m,) — 0 and the sequence of
tensor-valued measures

g =Y (S(t1) = S(§)*P 5(-— 1)

Tn

converges to a Symp(Rd)—valued measure s without atoms in the following
sense: Vf € C([0, T],Sp(RY)),

< fopn>= 3 < F(4),(S(t1) = S(4)¥P > ="7° < fus > . (7)

We write S € V,(m) and call [S]P(t) := u([0, t]) the p-th variation of S.
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Theorem (Rough change of variable formula: multi-dim case)

Let p € 2N be an even integer, let (m,) be a sequence of partitions of [0, T| and

S € V()N C([0, T],R?). Then for every f € CP(R,R) the limit of compensated
Riemann sums

/t < Vp_1f08§,dS >:= lim ZZ— < VHF(5(8)), (S(t41 A t) — S(t A 1)EF >
0

n— oo
Tn k=1

exists for every t € [0, T] and satisfies

£(S(t)) — £(5(0)) :/0 <V, 1f0S,dS > +%/0 < VPF(S(1))), d[S]P(u) >
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Functional change of variable formula: general case

Theorem (C.- Perkowski, 2018)

Letpe?2N F e Ci’p(/\r), ‘tand S € V,,(n) for a sequence of partitions (m,) with
|Ta| = 0. Then the limit [; < T, 1F(.,S),dS >=

p—1
im > Y %ng(tj,sg,)(S(th ALY = S(6 A D), exists and

n—oo
[tj,tjpa]€mn k=1

t
F(t,S:) = F(0,S0) +/ DF (s, Ss)ds
0
+ Jo <Tp1F(,,S), dS >+ f5 VEF(s, Ss)d[S]?(s)

This extends the pathwise integral to all ‘closed (p — 1) forms’:
Tp_lC}?’p = {TF,_]_F7 Fe Cz’p(AT)}
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A higher order isometry formula

The following result extends the isometry formula for the pathwise integral
obtained in the case p = 2 by (Ananova-C. 2017):

Theorem (Isometry formula)

Let p € N be an even integer, (7,) a sequence of partitions with mesh size going
to zero, and S € V,(m) N C*([0, T],R) with o > ((1 + 3)!/* = 1)/2. Let

F € CyP(A7) NLip(AT, dso) be such that V,F € CyP " (At). Then

F(.,S) € Vy(m), /O T, 1F(S)dS € Vy(r)  and

[ / o1 F(-, S)dSP(t) / IV F (5, S)PAISIP(s) = [V F (o ) oo ryarsp)-
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Rough-smooth decomposition

‘Signal+noise’ decomposition for smooth functionals of a rough process:
Theorem (Rough-smooth decomposition: general case)

Let p € N be an even integer, let a > ((1 + %)1/2 —1)/2, and let
S e Vu(m) N C([0, T],R) be a path with strictly increasing p-th variation [S]P
along (m,). Then any X € C}P(S) admits a unique decomposition

t
NpeT,1C% X =X(0) +A+/ < ¢0S,dS >
0
where ¢ is a closed (p — 1)-form and [A]P = 0.

@ For S martingale, p = 2 this is a '‘Doob Meyer' decomposition. However our
formulation is strictly pathwise/ non-probabilistic.

@ Such pathwise decompositions were obtained in the rough path setting by
Hairer & Pillai (2013), Friz & Shekhar (2013).
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|
Relation with ‘rough path integration’

Define a control function as a continuous map ¢: A1 — R, such that
c(t,t) =0 and c(s,u) + c(u, t) < c(s, t).

Definition (Reduced rough path of order p)

Let p > 1. A reduced rough path of finite p-variation is a map
X=(1,X,...,XP)y: Ar — S, (RY),
such that

Lp]

Z |X§,t‘p/k < C(Sa t)a (57 t) S AT;
k=1

for some control function ¢ and the reduced Chen relation holds

Xs,t = Sym(xs,u ® Xu,t)v (57 U), (u7 t) €EAT.

R Cont Rough calculus NEK 3X25 43 /46



A canonical reduced rough path for S € V,(7)

Lemma
Let p>1,S € C([0, T],RY) N V, () where
=(t%), =0 ty=inf{relt],T], [5(t)—5(t) =2""}.

Then for any q > p with |q] = | p] we obtain a reduced rough path of finite
g-variation by setting ngt(S) =1,
1

Xei(8) = (S() = S()™,  k=1....lp] -1,
1

X (s) = L J<5<t)—5<s))®tpJ r JI([S]P(t) [SIP(s)).-

Furthermore X : S — X is a non-anticipative functional.
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Proposition

Let p > 1, let X be a reduced rough path of finite p-variation and let
Y € D>L(pJ /p([O, T]). Then the ‘rough path integral’
t Lp]
K(Y)(t) = /0 (VhaX(s) = fim 30 S XE ).

wen([0,t]
O g e k=1

defines a function in C([0, T],R), and it is the unique function with Ix(Y)(0) =0
for which there exists a control function ¢ with

[ ove.axo) - S0k X e (s ear
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Pathwise integral as canonical rough integral

Proposition (C- Perkowski 2018)

Let p € 2N be an even integer, S € V() and X the canonical reduced rough
path of order p associated to S, defined above. Then

/ (VF(S(s)), dX(s)) = / (Vp1£(5).dS),
0 0

Rough integral Pathwise integral

where the right hand side is the pathwise integral defined as a limit of
compensated Riemann sums.
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