Calcul d'Ito sans probabilités: pathwise calculus for non-anticipative functionals of irregular paths

Rama Cont

Anna ANANOVA (Oxford)
Henry CHIU (Imperial College London)
Purba DAS (Oxford)

Nicolas PERKOWSKI (Humboldt Univ, Berlin)
Nicole El Karoui 3 X 25 Conference, Paris 2019

Mathematical Reviews
Previous | Up || Next

$$
\text { Citations } \quad \text { From References: } 95 \quad \text { From Reviews: } 11
$$

MR622559 (82j:60098) 60H05
Föllmer, H. [Föllmer, Hans]
ŁCalcul d'Itô sans probabilités. (French)
Seminar on Probability, XV (Univ. Strasbourg, Strasbourg, 1979/1980) (French), pp. 143-150, Lecture Notes in Math., 850, Springer, Berlin, 1981.

L'auteur montre que le calcul d'Itô peut se faire trajectoire par trajectoire, à l'aide des sommes de Riemann par rapport à une classe de fonctions réelles à variation quadratique, $x(t)$, continues à droite et pourvues de limites à gauche.

Il établit que si les mesures $m_{n}=\sum_{t_{i} \in \tau_{n}}\left(x\left(t_{i+1}\right)-x\left(t_{i}\right)\right)^{2} \varepsilon_{t_{i}}$ où les $\left(t_{i}\right)$ appartiennent à une subdivision τ_{n} dont le pas tend vers 0 avec n, convergent vaguement vers une mesure de fonction de répartition notée $[x, x]_{t}$ de partie discontinue $\sum_{s<t}(x(s)-$ $x(s-))^{2}$, la formule d'Itô habituelle est vraie pour une fonction F de classe C^{2}. Il lui suffit ensuite de montrer que pour une semimartingale les trajectoires sont p.s. à variation quadratique pour une subdivision bien choisie, pour établir la formule d'Itô en toute généralité.

References

- H Föllmer (1981) Calcul d'Ito sans probabilités, Séminaire de Probabilités.
- A Ananova, R Cont (2017) Pathwise integration with respect to paths of finite quadratic variation, Journal de Mathématiques Pures et appliquées.
- H Chiu, R Cont (2018) On pathwise quadratic variation for cadlag functions, Electronic Communications in Probability.
- R Cont, N Perkowski (2019) Pathwise integration and change of variable formulas for continuous paths with arbitrary regularity, Transactions of the American Mathematical Society, 6:161-186.
- R Cont, P Das (2019) Quadratic variation and quadratic roughness, Working Paper.
- R Cont Functional Ito Calculus and Functional Kolmogorov Equations, (Barcelona Summer School on Stochastic Analysis, July 2012), Springer.

"Calcul d'Itô Sans Probabilités" (Föllmer 1981)

Let $X \in C^{0}\left([0, T], \mathbb{R}^{d}\right)$ and $f \in C^{2}\left(\mathbb{R}^{d}, \mathbb{R}\right)$. The main idea in the proof of the lto formula is to consider a sequence of partitions $\pi_{n}=\left(0=t_{0}^{n}<t_{1}^{n} . .<t_{N\left(\pi_{n}\right)}^{n}=T\right)$ of $[0, T]$ with $\left|\pi_{n}\right| \rightarrow 0$ and expand increments of $f(X(t))$ along the partition using a 2nd order Taylor expansion:

$$
\begin{gathered}
f(X(t))-f(X(0))=\sum_{\pi_{n}} f\left(X\left(t_{i+1}^{n}\right)\right)-f\left(X\left(t_{i}^{n}\right)\right) \\
=\sum_{\pi_{n}} \nabla f\left(X\left(t_{i}^{n}\right)\right) \cdot\left(X\left(t_{i+1}^{n}\right)-X\left(t_{i}^{n}\right)\right) \\
+\frac{1}{2} t\left(X\left(t_{i+1}^{n}\right)-X\left(t_{i}^{n}\right)\right) \nabla^{2} f\left(X\left(t_{i}^{n}\right)\right) \cdot\left(X\left(t_{i+1}^{n}\right)-X\left(t_{i}^{n}\right)\right)+r\left(X\left(t_{i+1}^{n}\right), X\left(t_{i}^{n}\right)\right)
\end{gathered}
$$

Summing over π_{n} we get

$$
f(X(t))-f(X(0))=S_{1}\left(\pi_{n}, f\right)+S_{2}\left(\pi_{n}, f\right)+R\left(\pi_{n}, f\right)
$$

- By uniform continuity of

$$
\begin{aligned}
& r(x, y)=f(y)-f(x)-\nabla f(x) \cdot(y-x)-\frac{1}{2}^{t}(y-x) \nabla^{2} f(x)(y-x), \\
& r(x, y) \leq \varphi(\|x-y\|)\|x-y\|^{2} \quad \text { with } \quad \varphi(u) \xrightarrow{u \rightarrow 0} 0 \\
& R\left(\pi_{n}, f\right)=\epsilon_{n} \sum_{\pi_{n}}\left\|X\left(t_{i+1}^{n}\right)-X\left(t_{i}^{n}\right)\right\|^{2} .
\end{aligned}
$$

- So both this term and the 'quadratic Riemann sum'

$$
S_{2}\left(\pi_{n}, f\right)=\frac{1}{2} \sum_{\pi_{n}}{ }^{t}\left(X\left(t_{i+1}^{n}\right)-X\left(t_{i}^{n}\right)\right) \nabla^{2} f\left(X\left(t_{i}^{n}\right)\right) \cdot\left(X\left(t_{i+1}^{n}\right)-X\left(t_{i}^{n}\right)\right)
$$

are controlled by the convergence of (weighted) sums of squared increments of X along π_{n}.

Quadratic Riemann sums

For $\mathrm{d}=1$: given a path of X, pointwise convergence of 'quadratic Riemann sums'

$$
S_{2}\left(\pi_{n}, f\right)=\frac{1}{2} \sum_{\pi_{n}} \nabla^{2} f\left(X\left(t_{i}^{n}\right)\right) \cdot\left(X\left(t_{i+1}^{n}\right)-X\left(t_{i}^{n}\right)\right)^{2}
$$

along the path for every $f \in C^{2}\left(\mathbb{R}^{d}, \mathbb{R}\right)$ is exactly equivalent to the weak convergence of the sequence of discrete measures

$$
\mu_{n}=\sum_{t_{j} \in \pi_{n}}\left(X\left(t_{j+1}^{n}\right)-X\left(t_{j}^{n}\right)\right)^{2} \delta_{t_{j}}
$$

where δ_{t} denotes a point mass at t. This is a joint property of X and $\pi=\left(\pi_{n}\right)_{n \geq 1}$. This motivated Föllmer's (1981) definition of 'pathwise quadratic variation along a sequence of partitions.

Quadratic variation along a partition sequence

Definition (Föllmer 1981)

Let $\pi_{n}=\left(0=t_{0}^{n}<t_{1}^{n} . .<t_{N\left(\pi_{n}\right)}^{n}=T\right)$ be a sequence of partitions of $[0, T]$ with $\left|\pi_{n}\right| \rightarrow 0$. A càdlàg function $x \in D([0, T], \mathbb{R})$ is said to have finite quadratic variation along the sequence of partitions $\pi=\left(\pi_{n}\right)_{n \geq 1}$ if the weak limit

$$
\mu:=\lim _{n \rightarrow \infty} \sum_{t_{j} \in \pi_{n}}\left(x\left(t_{j+1}^{n}\right)-x\left(t_{j}^{n}\right)\right)^{2} \delta_{t_{j}}
$$

exists and has Lebesgue decomposition given by

$$
\mu([0, t])=[x]_{\pi}^{c}(t)+\sum_{0<s \leq t}|\Delta x(s)|^{2}
$$

where $[x]_{\pi}^{c}$ is a continuous and increasing function. $[x]_{\pi}(t)=\mu([0, t])$ is called the quadratic variation of x along π.

We denote $Q_{\pi}([0, T], \mathbb{R})$ the set of functions with this property.

Multidimensional paths

$Q_{\pi}\left([0, T], \mathbb{R}^{d}\right)$ is not a vector space (Schied 2016) so care must be taken in defining this notion for vector valued functions:

Definition (Paths of finite quadratic variation)
$x \in Q_{\pi}\left([0, T], \mathbb{R}^{d}\right)$ if, for all $1 \leq i, j \leq d, x^{i}, x^{i}+x^{j}$ in $Q_{\pi}([0, T], \mathbb{R})$. Then $[x]_{\pi}:[0, T] \rightarrow S_{d}^{+}$defined by

$$
\begin{aligned}
\left([x]_{\pi}\right)_{i, j}(t) & =\frac{1}{2}\left(\left[x^{i}+x^{j}\right]_{\pi}(t)-\left[x^{i}\right]_{\pi}(t)-\left[x^{j}\right]_{\pi}(t)\right) \\
& =\left[x^{i}, x^{j}\right]_{\pi}^{c}(t)+\sum_{0<s \leq t} \Delta x^{i}(s) \Delta x^{j}(s), \quad i, j=1, \ldots, d
\end{aligned}
$$

is an increasing function with values positive symmetric $d \times d$ matrices.

Characterization

Proposition (Henry Chiu \& R C (2018))
Let $x \in D\left([0, T], \mathbb{R}^{d}\right)$ and define

$$
[x]_{\pi_{n}}(t)=\sum_{t_{j} \in \pi_{n}}\left(x\left(t_{j+1}^{n} \wedge t\right)-x\left(t_{j}^{n} \wedge t\right)\right)^{t}\left(x\left(t_{j+1}^{n} \wedge t\right)-x\left(t_{j}^{n} \wedge t\right)\right) \in S_{d}^{+}
$$

where S_{d}^{+}is the cone of semidefinite postive symmetricd $\times d$ matrices The following properties are equivalent:
(1) x has finite quadratic variation along the sequence of partitions $\left(\pi_{n}\right)_{n \geq 1}$.
(2) The sequence $[x]_{\pi_{n}}$ converges in Skorokhod (J_{1}) topology $[0, T]$ to (an increasing function) $[x]_{\pi} \in D\left([0, T], S_{d}^{+}\right)$.

Föllmer's "pathwise Ito formula"

Proposition (Föllmer, 1981)
$\forall f \in C^{2}\left(\mathbb{R}^{d}, \mathbb{R}\right), \forall \omega \in Q_{\pi}\left([0, T], \mathbb{R}^{d}\right)$, the non-anticipative Riemann sums along π

$$
\sum_{\pi_{n}} \nabla f\left(\omega\left(t_{i}^{n}\right)\right) \cdot\left(\omega\left(t_{i+1}^{n}\right)-\omega\left(t_{i}^{n}\right)\right)^{n \rightarrow \infty} \int_{0}^{T} \nabla f(\omega(t)) \cdot d^{\pi} \omega
$$

converge pointwise and

$$
\begin{aligned}
f(\omega(t))-f(\omega(0)) & =\int_{0}^{t} \nabla f(\omega) \cdot d^{\pi} \omega+\frac{1}{2} \int_{0}^{t}<\nabla^{2} f(\omega), d[\omega]_{\pi}^{c}> \\
& +\sum_{s \leq t} f(\omega(s))-f(\omega(s-))-\nabla f(\omega(s-)) \cdot \Delta \omega(s)
\end{aligned}
$$

Pathwise construction of stochastic integrals

- Föllmer's result allows to define integrals of the type

$$
\int \nabla f(\omega(t)) d \omega \quad f \in C^{2}\left(\mathbb{R}^{d}, \mathbb{R}\right)
$$

as a (pathwise) limit of (left) Riemann sums, for any path ω with finite quadratic variation along $\left(\pi_{n}\right)$.

- Admissible integrands are gradients of C^{2} functions.

Some questions:

- Extension to path-dependent integrands/ functionals? (with D Fournié, H Chiu)
- Properties of the pathwise integral: Continuity, Isometry...? (with A Ananova)
- Stability/ invariance of construction with respect to the choice of partitions? (with P Das)
- Extension to 'rougher' paths with non-zero higher-order variation? (with N Perkowski)

Invariance with respect to sequence of partitions

Joint work with Purba DAS (Oxford).
Consider two sequences of partitions π, τ and a continuous path $\omega \in Q_{\pi}\left([0, T], \mathbb{R}^{d}\right) \cap Q_{\tau}\left([0, T], \mathbb{R}^{d}\right)$. For all $f \in C^{2}\left(\mathbb{R}^{d}\right)$,

$$
\begin{aligned}
f(\omega(t))- & \left.f(\omega(0))=\int_{0}^{t} \nabla f(\omega) \cdot d^{\pi} \omega+\frac{1}{2} \int_{0}^{t}<\nabla^{2} f(\omega), d[\omega]_{\pi}\right\rangle \\
& \left.=\int_{0}^{t} \nabla f(\omega) \cdot d^{\tau} \omega+\frac{1}{2} \int_{0}^{t}<\nabla^{2} f(\omega), d[\omega]_{\tau}\right\rangle
\end{aligned}
$$

The pathwise integrals are equal if and only if the quadratic variations along π^{n} and τ^{n} are equal : $[\omega]_{\pi}=[\omega]_{\tau}$.
Under what conditions on the path ω and the partitions is this the case?

Invariance with respect to sequence of partitions

Unfortunately pathwise quadratic variation does depend on the sequence of partitions...

- Freedman (1983): Let $\omega \in C^{0}\left([0, T], \mathbb{R}^{d}\right)$. There exists a sequence of partitions (π^{n}) such that $[\omega]_{\pi}=0$.
- Davis, Obloj and Siorpaes (2018): for any increasing function $A:[0, T] \rightarrow[0, \infty)$ one can construct a sequence of partitions $\pi=\left(\pi^{n}\right)$ such that $[\omega]_{\pi}(t)=A(t)$.
- On the other hand we know that for Brownian paths, quadratic variation is a.s. equal to t along any refining partition (Lévy 1934) and any sequence of partitions with mesh $o(1 / \log n)$ (Dudley 1973).
- So there must be a large class of functions which 'locally behave like Brownian motion' for which one can obtain an invariance property of quadratic variation with respect to a (large) class of partition sequences.

Well-balanced sequences of partitions

Let $\underline{\pi^{n}}=\inf _{i=0 . . N\left(\pi^{n}\right)-1}\left|t_{i+1}^{n}-t_{i}^{n}\right|,\left|\pi^{n}\right|=\sup _{i=0 . . N\left(\pi^{n}\right)-1}\left|t_{i+1}^{n}-t_{i}^{n}\right|$
Definition
We call the sequence of partitions $\left(\pi^{n}\right)_{n \geq 1}$ well-balanced if

$$
\begin{equation*}
\exists c>0, \quad \forall n \geq 1, \quad \frac{\left|\pi^{n}\right|}{\frac{\pi^{n}}{2}} \leq c \tag{1}
\end{equation*}
$$

This condition means that the intervals in the partition π^{n} are asymptotically comparable.
Since $\underline{\pi}^{n} N\left(\pi^{n}\right) \leq T$, for a well-balanced sequence of partitions we have

$$
\begin{equation*}
\left|\pi^{n}\right| \leq c \pi^{n} \leq \frac{c T}{N\left(\pi^{n}\right)} \tag{2}
\end{equation*}
$$

Averaging lemma

If X has quadratic variation along $\left(\pi^{n}\right)$ then it also has quadratic variation along any subsequence $\left(\pi^{\prime(n)}\right)$. Comparing sum of squares along $\left(\pi^{n}\right)$ and the subsequence we obtain the following property:

Lemma (Cross-products of increments average to zero)
Let $X \in C^{\alpha}\left([0, T], \mathbb{R}^{d}\right)$ for some $\alpha>0$ and $\sigma^{n}=\left\{t_{i}^{n}, i=1 . . N\left(\sigma_{n}\right)\right\}$ be a well-balanced sequence of partitions of $[0, T]$ such that $X \in Q_{\sigma}\left([0, T], \mathbb{R}^{d}\right)$. Let $\kappa>\frac{1}{\alpha}$. and $\left(\sigma^{l_{n}}\right)_{n \geq 1}$ by a subsequence of σ^{n} with

$$
N\left(\sigma^{I_{n}-1}\right) \leq N\left(\sigma^{n}\right)^{\kappa} \leq N\left(\sigma^{I_{n}}\right)
$$

Define for $k=1 \cdots N\left(\sigma^{n}\right), p(k, n)=\inf \left\{m \geq 1: \quad t_{m}^{l_{n}} \in\left(t_{k}^{n}, t_{k+1}^{n}\right]\right\}$. Then

$$
\sum_{k=1}^{N\left(\sigma^{n}\right)} \sum_{p(k, n) \leq i, j \leq p(k+1, n)-1}\left(X\left(t_{i+1}^{l_{n}}\right)-X\left(t_{i}^{l_{n}}\right)\right)^{t}\left(X\left(t_{j+1}^{l_{n}}\right)-X\left(t_{j}^{l_{n}}\right)\right) \rightarrow 0
$$

Coarsening of a well-balanced partition

Coarsening of a partition corresponds to subsampling/ dropping points:

Definition (β-coarsening)

Let $\pi^{n}=\left(0=t_{0}^{n}<t_{1}^{n} . .<t_{N\left(\pi^{n}\right)}^{n}=T\right)$ be a well-balanced sequence of partitions of $[0, T]$ with vanishing mesh $\left|\pi^{n}\right| \rightarrow 0$ and $0 \leq \beta<1$. A β-coarsening of π is a sequence of subpartitions of π^{n}

$$
A^{n}=\left(0=t_{p(n, 0)}^{n}<t_{p(n, 1)}^{n}<\cdots<t_{p\left(n, N\left(A^{n}\right)\right)}^{n}=T\right)
$$

such that $\left(A^{n}\right)_{n \geq 1}$ is a well-balanced partition of $[0, T]$ and $\left|A^{n}\right| \sim\left|\pi^{n}\right|^{\beta}$.
Since $\left|\pi^{n}\right| \ll\left|A^{n}\right| \sim c\left|\pi^{n}\right|^{\beta}$, as n increases the number of points of π^{n} in each interval of A^{n} goes to infinity.

Quadratic roughness along a sequence of partitions

Let $\pi^{n}=\left(0=t_{0}^{n}<t_{1}^{n} . .<t_{N\left(\pi^{n}\right)}^{n}=T\right)$ be a well-balanced sequence of partitions of $[0, T]$ with $\left|\pi^{n}\right| \rightarrow 0$.

Definition (Quadratic roughness along a sequence of partitions)
$X \in Q_{\pi}\left([0, T], \mathbb{R}^{d}\right)$ is quadratically rough along π with coarsening index $\beta<1$ if

- $0<[X]_{\pi}<\infty$ is strictly increasing
- For any β-coarsening $\left(A^{n}\right)_{n \geq 1}$ of π and any $t \in(0, T]$ we have:

$$
\sum_{j=1}^{N\left(A^{n}\right)} \sum_{t_{i}^{n}, t_{i^{\prime}}^{n} \in\left[A_{j-1}^{n}, A_{j}^{n}\right)}\left(X\left(t_{i+1}^{n} \wedge t\right)-X\left(t_{i}^{n} \wedge t\right)\right)^{t}\left(X\left(t_{i^{\prime}+1}^{n} \wedge t\right)-X\left(t_{i^{\prime}}^{n} \wedge t\right)\right)^{n \rightarrow \infty} 0
$$

$R_{\pi}^{\beta}\left([0, T], \mathbb{R}^{d}\right) \subset Q_{\pi}\left([0, T], \mathbb{R}^{d}\right)$: set of paths with quadratic roughness property

Quadratic roughness along a sequence of partitions

Intuitively, quadratic roughness of X along $\left(\pi^{n}\right)_{n \geq 1}$ means that the increments of f sampled along π^{n} behave like a ' 2 nd order white noise' as we refine the partition:

$$
\sum_{j=1}^{N\left(A^{n}\right)} \sum_{t_{i, i}^{n}, t_{i}^{n} \in\left[A_{j-1}^{n}, A_{j}^{n}\right)}\left(X\left(t_{i+1}^{n} \wedge t\right)-X\left(t_{i}^{n} \wedge t\right)\right)^{t}\left(X\left(t_{i^{\prime}+1}^{n} \wedge t\right)-X\left(t_{i^{\prime}}^{n} \wedge t\right)\right)^{n \rightarrow \infty} 0 .
$$

As expected, Brownian paths satisfy this property:
Proposition (Quadratic roughness of Brownian paths (C.-Das 2019))
Let W be a Wiener process, $T>0$ and $0<\beta<1$. Then the sample paths of W almost-surely satisfy the quadratic roughness property with coarsening index β along any well-balanced partition sequence with mesh $o\left(1 /(\log n)^{1 / \beta}\right)$:

$$
\left|\pi^{n}\right|=o\left(1 /(\log n)^{1 / \beta}\right) \Rightarrow \mathbb{P}\left(W \in R_{\pi}^{\beta}([0, T])\right)=1
$$

Invariance of quadratic variation for rough functions

Our main result is that quadratic roughness implies invariance of pathwise quadratic variation along well-balanced sequences of partitions:

Theorem (Cont \& Das (2019))
Let $X \in C^{\alpha}\left([0, T], \mathbb{R}^{d}\right) \cap Q_{\sigma}\left([0, T], \mathbb{R}^{d}\right)$ for some well-balanced sequence of partitions $\sigma=\left(\sigma^{n}\right)$ of $[0, T]$ with $\lim \sup \left|\sigma^{n}\right| /\left|\sigma^{n+1}\right| i \infty . I f x \in R_{\sigma}^{\alpha}([0, T])$ then for any other well-balanced sequence of partitions $\tau=\left(\tau^{n}\right)_{n \geq 1}$,

- If $x \in Q_{\tau}\left([0, T], \mathbb{R}^{d}\right)$ then $[x]_{\sigma}=[x]_{\tau}$.
- There exists a subsequence $\pi^{n}=\tau^{k(n)}$ of τ such that $x \in Q_{\pi}\left([0, T], \mathbb{R}^{d}\right)$ and $[x]_{\sigma}=[x]_{\pi}$.

Extension to non-anticipative Functionals

Denote $\omega_{t}=\omega(t \wedge$.$) the past i.e. the path stopped at t$.
Definition (Non-anticipative Functionals)
A causal, or non-anticipative functional is a functional
$F:[0, T] \times D\left([0, T], \mathbb{R}^{d}\right) \mapsto \mathbb{R}$ whose value only depends on the past:

$$
\begin{equation*}
\forall \omega \in \Omega, \quad \forall t \in[0, T], \quad F(t, \omega)=F\left(t, \omega_{t}\right) . \tag{3}
\end{equation*}
$$

Causal functional= map on the space Λ_{T}^{d} of stopped paths, defined as the quotient space:

$$
\Lambda_{T}^{d}:=\left([0, T] \times D\left([0, T], \mathbb{R}^{d}\right)\right) / \sim
$$

where $(t, x) \sim\left(t^{\prime}, x^{\prime}\right) \leftrightarrow t=t^{\prime}, x_{t}=x_{t}^{\prime} . \Lambda_{T}^{d}$ is equipped with a metric

$$
d_{\infty}\left((t, x),\left(t^{\prime}, x^{\prime}\right)\right)=\sup _{u \in[0, T]}\left|x(u \wedge t)-x^{\prime}\left(u \wedge t^{\prime}\right)\right|+\left|t-t^{\prime}\right| .
$$

$\mathbb{C}^{0,0}\left(\Lambda_{T}^{d}\right)=$ continuous maps $\left(\Lambda_{T}^{d}, d_{\infty}\right) \rightarrow \mathbb{R}$.

Dupire's functional derivatives

Definition (Horizontal and vertical derivatives)

A non-anticipative functional F is said to be:

- horizontally differentiable at $(t, \omega) \in \Lambda_{T}^{d}$ if the finite limit exists

$$
\mathcal{D} F(t, \omega):=\lim _{h \rightarrow 0+} \frac{F\left(t+h, \omega_{t}\right)-F\left(t, \omega_{t}\right)}{h}
$$

- vertically differentiable at $(t, \omega) \in \Lambda_{T}^{d}$ if the map

$$
\mathbb{R}^{d} \rightarrow \mathbb{R}, e \mapsto F\left(t, \omega(t \wedge .)+e 1_{[t, T]}\right)
$$

is differentiable at 0 ; its gradient at 0 is denoted by $\nabla_{\omega} F(t, \omega)$.
Note that $\mathcal{D F}(t, \omega)$ is not the partial derivative in t :

$$
\mathcal{D} F(t, \omega) \neq \partial_{t} F(t, \omega)=\lim _{h \rightarrow 0} \frac{F(t+h, \omega)-F(t, \omega)}{h} .
$$

Smooth functionals

Definition $\left(\mathbb{C}_{b}^{1, p}\left(\Lambda_{T}^{d}\right)\right.$ functionals)

We denote by $\mathbb{C}_{b}^{1, p}\left(\Lambda_{T}^{d}\right)$ the set of non-anticipative functionals $F \in \mathbb{C}_{1}^{0,0}\left(\Lambda_{T}^{d}\right)$, such that

- F is horizontally differentiable with $\mathcal{D F}$ continuous at fixed times,
- F is p times vertically differentiable with $\nabla_{\omega}^{j} F \in \mathbb{C}_{l}^{0,0}\left(\Lambda_{T}^{d}\right)$ for $j=1$..p
- $\mathcal{D} F, \nabla_{\omega}^{j} F \in \mathbb{B}\left(\Lambda_{T}^{d}\right)$ for $j=1$..p.

Example (Cylindrical functionals)

For $g \in C^{0}\left(\mathbb{R}^{d \times n}\right), h \in C^{k}\left(\mathbb{R}^{d}\right)$ with $h(0)=0$. Then

$$
F(t, \omega)=h\left(\omega(t)-\omega\left(t_{n}-\right)\right) \quad 1_{t \geq t_{n}} \quad g\left(\omega\left(t_{1}-\right), \omega\left(t_{2}-\right) \ldots, \omega\left(t_{n}-\right)\right) \quad \text { is } \mathbb{C}_{b}^{1, k}
$$

$$
\mathcal{D}_{t} F(\omega)=0, \quad \nabla_{\omega}^{j} F(t, \omega)=h^{(j)}\left(\omega(t)-\omega\left(t_{n}-\right)\right) 1_{t \geq t_{n}} g\left(\omega\left(t_{1}-\right), \ldots, \omega\left(t_{n}-\right)\right)
$$

$\mathbb{S}\left(\Lambda_{T}, \pi_{n}\right):=$ simple predictable cylindrical functionals along π_{n}, $\mathbb{S}\left(\Lambda_{T}, \pi\right):=\cup_{n>1} \mathbb{S}\left(\Lambda_{T}, \pi_{n}\right) \times$

Examples of smooth functionals

Example (Integral functionals)
For $g \in C_{0}\left(\mathbb{R}^{d}\right), Y(t)=\int_{0}^{t} g(X(u)) \rho(u) d u=F\left(t, X_{t}\right)$ where

$$
\begin{equation*}
F(t, \omega)=\int_{0}^{t} g(\omega(u)) \rho(u) d u \tag{4}
\end{equation*}
$$

$F \in \mathbb{C}_{b}^{1, \infty}$, with:

$$
\begin{equation*}
\mathcal{D}_{t} F(\omega)=g(\omega(t)) \rho(t) \quad \nabla_{\omega}^{j} F(t, \omega)=0 \tag{5}
\end{equation*}
$$

Functional change of variable formula: $p=2$

Theorem (R.C.- Fournié ,2010)
Let $\omega \in V_{2}(\pi) \cap C^{0}\left([0, T], \mathbb{R}^{d}\right)$ and $\left.\omega^{n}:=\sum_{i=0}^{m(n)-1} \omega\left(t_{i+1}^{n}-\right) \mathbf{1}_{\left[t_{i}^{n}, t_{i+1}^{n}\right.}\right)+\omega(T) \mathbf{1}_{\{T\}}$.
Then for any $F \in \mathbb{C}_{b}^{1,2}\left(\Lambda_{T}^{d}\right)$, the pointwise limit of Riemann sums

$$
\int_{0}^{T} \nabla_{\omega} F(t, \omega) d^{\pi} \omega:=\lim _{n \rightarrow \infty} \sum_{i=0}^{m(n)-1} \nabla_{\omega} F\left(t_{i}^{n}, \omega^{n}\right)\left(\omega\left(t_{i+1}^{n}\right)-\omega\left(t_{i}^{n}\right)\right)
$$

exists and $F(T, \omega) \quad=F(0, \omega)+\int_{0}^{T} \nabla_{\omega} F(t, \omega) \cdot d^{\pi} \omega$

$$
+\quad \int_{0}^{T} \mathcal{D} F(t, \omega) d t+\int_{0}^{T} \frac{1}{2} \operatorname{tr}\left(\nabla_{\omega}^{2} F(t, \omega) d[\omega]_{\pi}^{c}(t)\right)
$$

These result allows to construct $\int_{0}^{\cdot} \nabla_{\omega} F$ as a pointwise limit of non-anticipative 'Riemann sums':

$$
\int_{0}^{T} \nabla_{\omega} F\left(t, \omega_{t-}\right) \cdot d^{\pi} \omega=\lim _{n \rightarrow \infty} \sum_{i=0}^{m(n)-1} \nabla_{\omega} F\left(t_{i}^{n}, \omega^{n}\right)\left(\omega\left(t_{i+1}^{n}\right)-\omega\left(t_{i}^{n}\right)\right)
$$

Remark

$$
F \in \mathcal{R}\left(\Lambda_{T}^{d}\right), \omega \in C^{\frac{1}{2}-}\left([0, T], \mathbb{R}^{d}\right) \Rightarrow \nabla_{\omega} F(t, \omega) \in C^{\frac{1}{2}-}\left([0, T], \mathbb{R}^{d}\right) .
$$

The pathwise integral is a strict extension of the Young integral.

$$
\text { Denote } \quad C^{\frac{1}{2}-}\left([0, T], \mathbb{R}^{d}\right)=\cap_{\nu<1 / 2} C^{\nu}\left([0, T], \mathbb{R}^{d}\right)
$$

Theorem (Pathwise Isometry formula, A. Ananova, R. C. 2016)
Let $\omega \in Q_{\pi}\left([0, T], \mathbb{R}^{d}\right) \cap C^{1 / 2-}\left([0, T], \mathbb{R}^{d}\right)$ where $\left|\pi^{n}\right| \rightarrow 0$. If $F \in \mathbb{C}^{1,2}\left(\Lambda_{T}\right)$ is Lipschitz-continuous and $\nabla_{\omega} F \in \mathbb{C}_{b}^{1,1}\left(\Lambda_{T}^{d}\right)$ then

$$
\begin{gathered}
F(., \omega) \in Q_{\pi}\left([0, T], \mathbb{R}^{d}\right), \quad \int_{0} \nabla_{\omega} F(\cdot, \omega) \cdot d^{\pi} \omega \in Q_{\pi}\left([0, T], \mathbb{R}^{d}\right) \\
{[F(t, \omega)]^{\pi}(t)=\left[\int_{0}^{l} \nabla_{\omega} F(s, \omega) \cdot d^{\pi} \omega\right]^{\pi}(t)=\int_{0}^{t}\left\langle\nabla_{\omega} F(s, \omega) \cdot \nabla_{\omega} F(s, \omega), d[\omega]^{\pi}(s)\right\rangle .}
\end{gathered}
$$

This is a pathwise version of the Ito isometry formula: if we take expectations on both sides with respect to the Wiener measure we recover the well-known Ito isometry.

Conditional expectations as smooth functionals

Vertical smoothness: $H:\left(D([0, T], R),\|\cdot\|_{\infty}\right) \mapsto \mathbb{R}$ is vertically smooth on continuous paths if for $(t, \omega) \in[0, T] \times C^{0}\left([0, T], \mathbb{R}^{d}\right)$, the map

$$
\begin{equation*}
\left.g^{H}(. ; t, \omega): e \in \mathbb{R}^{d} \rightarrow \quad g^{H}(e)=H\left(\omega+e 1_{[t, T]}\right)\right), \tag{6}
\end{equation*}
$$

is twice differentiable at 0 , with derivatives bounded in a neighborhood of 0 , uniformly with respect to $(t, \omega) \in[0, T] \times C^{0}\left([0, T], \mathbb{R}^{d}\right)$.

Proposition (C \& Riga 2016)

Let \mathbb{Q} be the Wiener process and $H:\left(D([0, T], R),\|\cdot\|_{\infty}\right) \mapsto \mathbb{R}$ be \mathbb{Q}-integrable, Lipschitz and vertically smooth. Then there exists $F \in \mathbb{C}_{b}^{0,2}\left(\mathcal{W}_{T}\right)$ such that $F\left(t, X_{t}\right)=E^{\mathbb{Q}^{\sigma}}\left[H(X) \mid \mathcal{F}_{t}^{X}\right] \mathbb{Q}^{\sigma}-$ a.s.

El Karoui, Jeanblanc and Shreve (1997) revisited

Proposition (Pathwise analysis of hedging strategies)

Let $\omega \in Q_{\pi}\left([0, T], \mathbb{R}_{+}\right)$be a strictly positive price path whose quadratic variation $[\omega]$ along $\pi=\left(\pi_{n}\right)$ is absolutely continuous.

Denote $\quad \sigma(t, \omega)^{2}=\frac{1}{\omega(t)^{2}} \frac{d[\omega]}{d t}$
If there exists $F \in \mathbb{C}^{1,2}\left(\mathcal{W}_{T}\right)$ such that

$$
F(t, \omega)=E\left[H \mid S_{t}=\omega_{t}\right]
$$

A delta-hedging strategy for H computed in a Black-Scholes model with volatility σ_{0} leads to a profit/loss along the path ω given by

$$
\int_{0}^{T} \frac{\sigma_{0}^{2}-\sigma^{2}(t, \omega)}{2} \omega(t)^{2} e^{\int_{t}^{T} r(s) d s} \underbrace{\nabla_{\omega}^{2} F(t, \omega)}_{\Gamma(t)} d t
$$

p-th variation along a sequence of partitions

Define the oscillation of $S \in C([0, T], \mathbb{R})$ along π_{n} as

$$
\operatorname{osc}\left(S, \pi_{n}\right):=\max _{\left[j_{j}, t_{j}\right]+\pi_{n}} \max _{r, s \in\left[t_{j}, t_{j+1}\right]}|S(s)-S(r)| .
$$

Definition (p-th variation along a sequence of partitions)
Let $p>0$. Let $S \in C([0, T], \mathbb{R})$ with $\operatorname{osc}\left(S, \pi_{n}\right) \rightarrow 0$. The sequence of measures

$$
\mu^{n}=\sum_{\left[t_{j}, t_{j+1}\right] \in \pi_{n}} \delta\left(\cdot-t_{j}\right)\left|S\left(t_{j+1}\right)-S\left(t_{j}\right)\right|^{p}
$$

converges weakly to a measure μ without atoms \Longleftrightarrow There exists a continuous increasing function $[S]^{p}$ such that

$$
\forall t \in[0, T], \quad \sum_{\pi_{n}}\left|S\left(t_{j+1} \wedge t\right)-S\left(t_{j} \wedge t\right)\right|^{p^{n} \rightarrow \infty}[S]^{p}(t) .
$$

Then $[S]^{p}(t):=\mu([0, t])$ and we write $S \in V_{p}(\pi)$ and $[S]^{p}(t):=\mu([0, t])$ is the p-th variation of S along π.

p-th variation along a sequence of partitions

Lemma

Let $S \in C([0, T], \mathbb{R}) . S \in V_{p}(\pi)$ if and only if there exists a continuous increasing function $[S]^{p}$ such that

$$
\forall t \in[0, T], \quad \sum_{\pi_{n}}\left|S\left(t_{j+1} \wedge t\right)-S\left(t_{j} \wedge t\right)\right|^{p^{n} \rightarrow \infty}[S]^{p}(t) .
$$

If this property holds then the convergence is uniform.

Examples of processes with sample paths in $V_{p}(\pi)$

Paths in $V_{p}(\pi)$ do not necessarily have finite p-variation.

- If B_{H} is a fractional Brownian motion B_{H} with Hurst index $H \in(0,1)$ and $\pi_{n}=\left\{k T / n: k \in \mathbb{N}_{0}\right\} \cap[0, T]$, then $B_{H} \in V_{1 / H}(\pi)$ and $\left[B_{H}\right]^{1 / H}(t)=t \mathbb{E}\left[\left|B_{H}(1)\right|^{1 / H}\right]$, while $\left\|B_{H}\right\|_{p-v a r}=\infty$ almost surely for $p=1 / H$.
- Stochastic heat equation: if $u(t, x)$ is the solution of the stochastic heat equation with white noise on $[0, T] \times \mathbb{R}$ then $u(., x) \in V_{4}([0, T])$, while $\|u(., x)\|_{4-v a r}=\infty$.
- Reflected Brownian motion in wedge (limit process arising in queueing theory).

‘Rough' Change of variable formula

Theorem (R.C- Perkowski (2018))
Let $p \in 2 \mathbb{N}$ be even, $S \in V_{p}(\pi)$. Then for every $f \in C^{p}(\mathbb{R}, \mathbb{R})$

$$
f(S(t))-f(S(0))=\int_{0}^{t}<\nabla_{p-1} f(S), d S>+\frac{1}{p!} \int_{0}^{t} f^{(p)}(S(s)) d[S]^{p}(s),
$$

where the integral is defined as a (pointwise) limit of compensated Riemann sums:

$$
\begin{aligned}
& \int_{0}^{t} \nabla_{p-1} f \circ S . d S:=\int_{0}^{t}<\nabla_{p-1} f(S)(u), d S(u)> \\
& =\lim _{n \rightarrow \infty} \sum_{\pi_{n}} \sum_{k=1}^{p-1} \frac{f^{(k)}\left(S\left(t_{j}\right)\right)}{k!}\left(S\left(t_{j+1} \wedge t\right)-S\left(t_{j} \wedge t\right)\right)^{k}
\end{aligned}
$$

In particular we construct a pathwise Ito-type integral + change of variable formula for FBM with any Hurst exponent.

Pathwise integral

The pathwise integral

$$
\int_{0}^{t}<\nabla_{p-1} f \circ S, d S>:=\lim _{n} R_{p-1}\left(f, S, \pi_{n}\right)
$$

is a pointwise limit of compensated Riemann sums

$$
R_{p-1}\left(f, S, \pi_{n}\right)=\sum_{\pi_{n}} \sum_{k=1}^{p-1} \frac{f^{(k)}\left(S\left(t_{j}\right)\right)}{k!}\left(S\left(t_{j+1} \wedge t\right)-S\left(t_{j} \wedge t\right)\right)^{k}
$$

It should be really seen as an integral of the $(p-1)$-jet $\nabla_{p-1} f$ of f

$$
\nabla_{p-1} f(x)=\left(f^{(k)}(x), k=0,1, \ldots, p-1\right)
$$

with respect to a differential structure of order $p-1$ constructed along $S \in V_{p}(\pi)$ using the powers of increments up to order $p-1$.

Isometry formula for the pathwise integral

The following result extends the pathwise isometry formula obtained in (Ananova-C. 2017) for $p=2$:

Theorem (Isometry formula (C.-Perkowski 2018))
Let $p \in 2 \mathbb{N}$ be an even integer, $\left(\pi_{n}\right)$ a sequence of partitions with mesh size going to zero, and $S \in V_{p}(\pi) \cap C^{\alpha}([0, T], \mathbb{R})$ for some $\alpha>0$. Then for any $f \in C^{P}\left(\mathbb{R}^{d}\right)$,

$$
\begin{gathered}
f \circ S \in V_{p}(\pi) \quad \int_{0} \nabla_{p-1} f d S:=\int_{0}<\nabla_{p-1} f(S), d S>\in V_{p}(\pi) \\
{[f(S)]^{p}(T)=\left[\int_{0} \nabla_{p-1} f d S\right]^{p}(T)=\int_{0}^{T}\left|f^{\prime}(S)\right|^{p} d[S]^{p}=\left\|f^{\prime} \circ S\right\|_{L^{p}\left([0, T], d[S]^{p}\right)}^{p} .}
\end{gathered}
$$

Pathwise local time of order p

Definition (Local time of order p)

Let $p \in \mathbb{N}$ be an even integer and let $q \in[1, \infty]$. A continuous path $S \in C([0, T], \mathbb{R})$ has an L^{q}-local time of order $p-1$ along a sequence of partitions $\pi=\left(\pi_{n}\right)_{n \geq 1}$ if $\operatorname{osc}\left(S, \pi_{n}\right) \rightarrow 0$ and

$$
L_{t}^{\pi_{n}, p-1}(\cdot)=\sum_{t_{j} \in \pi} \mathbf{1}_{\| S\left(t_{j} \wedge t\right), S_{t_{j+1} \wedge t} \rrbracket}(\cdot)\left|S\left(t_{j+1} \wedge t\right)-\cdot\right|^{p-1}
$$

converges weakly in $L^{q}(\mathbb{R})$ to a weakly continuous map $L:[0, T] \rightarrow L^{q}(\mathbb{R})$ which we call the order p local time of S. We denote $\mathcal{L}_{p}^{q}(\pi)$ the set of continuous paths S with this property.

Intuitively, the limit $L_{t}(x)$ then measures the rate at which the path S accumulates p-th order variation near x.

Theorem (Higher order Tanaka-Wuermli formula)

Let $p \in 2 \mathbb{N}$ be an even integer, $q \in[1, \infty]$ with conjugate exponent $q^{\prime}=q /(q-1)$. Let $f \in C^{p-1}(\mathbb{R}, \mathbb{R})$ and assume that $f^{(p-1)}$ is weakly differentiable with derivative in $L^{q^{\prime}}(\mathbb{R})$. Then for any $S \in \mathcal{L}_{p}^{q}(\pi)$

$$
\int_{0}^{t} \nabla_{p-1} f \circ S \mathrm{~d} S:=\lim _{n \rightarrow \infty} \sum_{\left[t_{j}, t_{j+1}\right] \in \pi_{n}} \sum_{k=1}^{p-1} \frac{f^{(k)}\left(S\left(t_{j}\right)\right)}{k!}\left(S\left(t_{j+1} \wedge t\right)-S\left(t_{j} \wedge t\right)\right)^{k}
$$

exists and the following change of variable formula holds:

$$
f(S(t))-f(S(0))=\int_{0}^{t}<\nabla_{p-1} f \circ S, d S>+\frac{1}{(p-1)!} \int_{\mathbb{R}} f^{(p)}(x) L_{t}(x) \mathrm{d} x .
$$

Multidimensional paths: Symmetric tensors

A symmetric p -tensor T on \mathbb{R}^{d} is a p -tensor invariant under any permutation $\sigma \in \mathfrak{S}_{p}$ of its arguments: for $\left(v_{1}, v_{2}, \ldots, v_{p}\right) \in\left(\mathbb{R}^{d}\right)^{p}$

$$
\sigma T\left(v_{1}, \ldots, v_{p}\right):=T\left(v_{\sigma 1}, v_{\sigma 2}, \ldots, v_{\sigma p}\right)=T\left(v_{1}, v_{2}, \ldots, v_{p}\right)
$$

The space $\operatorname{Sym}_{p}\left(\mathbb{R}^{d}\right)$ of symmetric tensors of order p on \mathbb{R}^{d} is naturally isomorphic to the dual of the space $\mathbb{H}_{p}\left[X_{1}, \ldots, X_{d}\right]$ of homogeneous polynomials of degree p on \mathbb{R}^{d}.

$$
\mathbb{S}_{p}\left(\mathbb{R}^{d}\right)=\bigoplus_{k=0}^{p} \operatorname{Sym}_{k}\left(\mathbb{R}^{d}\right) .
$$

For any p-tensor T we define the symmetric part

$$
\operatorname{Sym}(T):=\frac{1}{p!} \sum_{\sigma \in \mathfrak{S}_{k}} \sigma T \in \operatorname{Sym}_{p}\left(\mathbb{R}^{d}\right)
$$

where \mathfrak{S}_{p} of $\{1, \ldots, k\}$ is the group of permutations of $\{1,2, \ldots, p\}$

Extension to multidimensional functions

Consider now a continuous \mathbb{R}^{d}-valued path $S \in C\left([0, T], \mathbb{R}^{d}\right)$ and a sequence of partitions $\pi_{n}=\left\{t_{0}^{n}, \ldots, t_{N\left(\pi_{n}\right)}^{n}\right\}$ with $t_{0}^{n}=0<\ldots<t_{k}^{n}<\ldots<t_{N\left(\pi_{n}\right)}^{n}=T$. Then

$$
\mu^{n}=\sum_{\pi_{n}} \underbrace{\left(S\left(t_{j+1}\right)-S\left(t_{j}\right)\right) \otimes \ldots \otimes\left(S\left(t_{j+1}\right)-S\left(t_{j}\right)\right)}_{\mathrm{p} \text { times }} \delta\left(\cdot-t_{j}\right)
$$

defines a tensor-valued measure on $[0, T]$ with values in $\operatorname{Sym}_{p}\left(\mathbb{R}^{d}\right)$. This space of measures is in duality with the space $C\left([0, T], H_{p}\left[X_{1}, \ldots, X_{d}\right]\right)$ of continuous functions taking values in homogeneous polynomials of degree p i.e. homogeneous polynomials of degree p with continuous time-dependent coefficients.
This motivates the following definition:

Definition (p-th variation of a multidimensional function)

Let $p \in 2 \mathbb{N}$ be an (even) integer, and $S \in C\left([0, T], \mathbb{R}^{d}\right)$ a continuous path and $\pi=\left(\pi_{n}\right)_{n \geq 1}$ a sequence of partitions of $[0, T] . S \in C\left([0, T], \mathbb{R}^{d}\right)$ is said to have a p-th variation along $\pi=\left(\pi_{n}\right)_{n \geq 1}$ if $\operatorname{osc}\left(S, \pi_{n}\right) \rightarrow 0$ and the sequence of tensor-valued measures

$$
\mu_{S}^{n}=\sum_{\pi_{n}}\left(S\left(t_{j+1}\right)-S\left(t_{j}\right)\right)^{\otimes p} \quad \delta\left(\cdot-t_{j}\right)
$$

converges to a $\operatorname{Sym}_{p}\left(\mathbb{R}^{d}\right)$-valued measure μ_{S} without atoms in the following sense: $\forall f \in C\left([0, T], \mathbb{S}_{\mathbf{p}}\left(\mathbb{R}^{\mathbf{d}}\right)\right)$,

$$
\begin{equation*}
<f, \mu_{n}>=\sum_{\pi_{n}}<f\left(t_{j}\right),\left(S\left(t_{j+1}\right)-S\left(t_{j}\right)\right)^{\otimes p}>\rightarrow^{n \rightarrow \infty}<f, \mu_{S}> \tag{7}
\end{equation*}
$$

We write $S \in V_{p}(\pi)$ and call $[S]^{p}(t):=\mu([0, t])$ the p-th variation of S.

Theorem (Rough change of variable formula: multi-dim case)
Let $p \in 2 \mathbb{N}$ be an even integer, let $\left(\pi_{n}\right)$ be a sequence of partitions of $[0, T]$ and $S \in V_{p}(\pi) \cap C\left([0, T], \mathbb{R}^{d}\right)$. Then for every $f \in C^{p}(\mathbb{R}, \mathbb{R})$ the limit of compensated Riemann sums
$\int_{0}^{t}<\nabla_{p-1} f \circ S, d S>:=\lim _{n \rightarrow \infty} \sum_{\pi_{n}} \sum_{k=1}^{p-1} \frac{1}{k!}<\nabla^{k} f\left(S\left(t_{j}\right)\right),\left(S\left(t_{j+1} \wedge t\right)-S\left(t_{j} \wedge t\right)\right)^{\otimes k}>$
exists for every $t \in[0, T]$ and satisfies
$\left.f(S(t))-f(S(0))=\int_{0}^{t}<\nabla_{p-1} f \circ S, d S>+\frac{1}{p!} \int_{0}^{t}<\nabla^{p} f(S(t))\right), d[S]^{p}(u)>$.

Functional change of variable formula: general case

Theorem (C.- Perkowski, 2018)
Let $p \in 2 \mathbb{N} F \in \mathbb{C}_{b}^{1, p}\left(\Lambda_{T}\right)$, and $S \in V_{p}(\pi)$ for a sequence of partitions (π_{n}) with $\left|\pi_{n}\right| \rightarrow 0$. Then the limit $\int_{0}^{t}<\mathbb{T}_{p-1} F(., S), d S>=$

$$
\lim _{n \rightarrow \infty} \sum_{\left[t_{j}, t_{j+1}\right] \in \pi_{n}} \sum_{k=1}^{p-1} \frac{1}{k!} \nabla_{\omega}^{k} F\left(t_{j}, S_{t_{j}}^{n}\right)\left(S\left(t_{j+1} \wedge t\right)-S\left(t_{j} \wedge t\right)\right)^{k}, \quad \text { exists and }
$$

$$
F\left(t, S_{t}\right)=F\left(0, S_{0}\right)+\int_{0}^{t} \mathcal{D} F\left(s, S_{s}\right) d s
$$

$+\int_{0}^{t}<\mathbb{T}_{p-1} F(., S), d S>+\frac{1}{p!} \int_{0}^{t} \nabla_{\omega}^{p} F\left(s, S_{s}\right) d[S]^{p}(s)$
This extends the pathwise integral to all 'closed $(p-1)$ forms':
$\mathbb{T}_{p-1} \mathbb{C}_{b}^{1, p}:=\left\{\mathbb{T}_{p-1} F, F \in \mathbb{C}_{b}^{1, p}\left(\Lambda_{T}\right)\right\}$

A higher order isometry formula

The following result extends the isometry formula for the pathwise integral obtained in the case $p=2$ by (Ananova-C. 2017):

Theorem (Isometry formula)
Let $p \in \mathbb{N}$ be an even integer, $\left(\pi_{n}\right)$ a sequence of partitions with mesh size going to zero, and $S \in V_{p}(\pi) \cap C^{\alpha}([0, T], \mathbb{R})$ with $\alpha>\left(\left(1+\frac{4}{p}\right)^{1 / 2}-1\right) / 2$. Let $F \in \mathbb{C}_{b}^{1, p}\left(\Lambda_{T}\right) \cap \operatorname{Lip}\left(\Lambda_{T}, d_{\infty}\right)$ be such that $\nabla_{\omega} F \in \mathbb{C}_{b}^{1, p-1}\left(\Lambda_{T}\right)$. Then

$$
\begin{gathered}
F(\cdot, S) \in V_{p}(\pi), \quad \int_{0} \mathbb{T}_{p-1} F(\cdot, S) d S \in V_{p}(\pi) \quad \text { and } \\
{\left[\int_{0} \mathbb{T}_{p-1} F(\cdot, S) d S\right]^{p}(t)=\int_{0}^{t}\left|\nabla_{\omega} F(s, S)\right|^{p} d[S]^{p}(s)=\left\|\nabla_{\omega} F(., S)\right\|_{L^{p}\left([0, T], d[S]^{p}\right)}^{p} .}
\end{gathered}
$$

Rough-smooth decomposition

'Signal+noise' decomposition for smooth functionals of a rough process:

Theorem (Rough-smooth decomposition: general case)

Let $p \in \mathbb{N}$ be an even integer, let $\alpha>\left(\left(1+\frac{4}{p}\right)^{1 / 2}-1\right) / 2$, and let $S \in V_{p}(\pi) \cap C^{\alpha}([0, T], \mathbb{R})$ be a path with strictly increasing p-th variation $[S]^{p}$ along (π_{n}). Then any $X \in \mathbb{C}_{b}^{1, p}(S)$ admits a unique decomposition

$$
\exists!\phi \in \mathbb{T}_{p-1} \mathbb{C}_{b}^{1, p}, \quad X=X(0)+A+\int_{0}^{t}<\phi \circ S, d S>
$$

where ϕ is a closed $(p-1)$-form and $[A]^{p}=0$.

- For S martingale, $p=2$ this is a 'Doob Meyer' decomposition. However our formulation is strictly pathwise/ non-probabilistic.
- Such pathwise decompositions were obtained in the rough path setting by Hairer \& Pillai (2013), Friz \& Shekhar (2013).

Relation with 'rough path integration'

Define a control function as a continuous map $c: \Delta_{T} \rightarrow \mathbb{R}_{+}$such that $c(t, t)=0$ and $c(s, u)+c(u, t) \leq c(s, t)$.

Definition (Reduced rough path of order p)
Let $p \geq 1$. A reduced rough path of finite p-variation is a map $\mathbb{K}=\left(1, \mathbb{K}^{1}, \ldots, \mathbb{X}^{\lfloor p\rfloor}\right): \Delta_{T} \longrightarrow \mathbb{S}_{\lfloor p\rfloor}\left(\mathbb{R}^{d}\right)$,
such that

$$
\sum_{k=1}^{\lfloor p\rfloor}\left|\mathbb{X}_{s, t}^{k}\right|^{p / k} \leq c(s, t), \quad(s, t) \in \Delta_{T}
$$

for some control function c and the reduced Chen relation holds

$$
\mathbb{X}_{s, t}=\operatorname{Sym}\left(\mathbb{K}_{s, u} \otimes \mathbb{K}_{u, t}\right), \quad(s, u),(u, t) \in \Delta_{T} .
$$

A canonical reduced rough path for $S \in V_{p}(\pi)$

Lemma

Let $p \geq 1, S \in C\left([0, T], \mathbb{R}^{d}\right) \cap V_{p}(\pi)$ where

$$
\pi_{n}=\left(t_{k}^{n}\right), \quad t_{0}^{n}=0, \quad t_{k+1}^{n}=\inf \left\{t \in\left[t_{k}^{n}, T\right], \quad\left|S(t)-S\left(t_{k}^{n}\right)\right| \geq 2^{-n}\right\}
$$

Then for any $q>p$ with $\lfloor q\rfloor=\lfloor p\rfloor$ we obtain a reduced rough path of finite q-variation by setting $\chi_{s, t}^{0}(S):=1$,

$$
\begin{gathered}
\mathbb{X}_{s, t}^{k}(S):=\frac{1}{k!}(S(t)-S(s))^{\otimes k}, \quad k=1, \ldots,\lfloor p\rfloor-1, \\
\mathbb{X}_{s, t}^{\lfloor p\rfloor}(S):=\frac{1}{\lfloor p\rfloor!}(S(t)-S(s))^{\otimes\lfloor p\rfloor}-\frac{1}{\lfloor p\rfloor!}\left([S]^{p}(t)-[S]^{p}(s)\right) .
\end{gathered}
$$

Furthermore $\mathbb{X}: S \mapsto \mathcal{X}$ is a non-anticipative functional.

Proposition

Let $p \geq 1$, let \mathcal{K} be a reduced rough path of finite p-variation and let $Y \in \mathcal{D}_{K}^{\lfloor p\rfloor / P}([0, T])$. Then the 'rough path integral'

$$
I_{\mathbb{K}}(Y)(t)=\int_{0}^{t}\langle Y(s), \mathrm{d} \mathbb{K}(s)\rangle=\lim _{\substack{\pi \in \Pi([0, t]) \\|\pi| \rightarrow 0}} \sum_{\substack{\left.t_{j}, t_{j+1}\right] \in \pi}} \sum_{k=1}^{\lfloor p\rfloor}\left\langle Y^{k}\left(t_{j}\right), \mathbb{K}_{t_{j}, t_{j+1}}^{k}\right\rangle,
$$

defines a function in $C([0, T], \mathbb{R})$, and it is the unique function with $l_{\mathcal{K}}(Y)(0)=0$ for which there exists a control function c with

$$
\left|\int_{s}^{t}\langle Y(r), \mathrm{d} \mathbb{X}(r)\rangle-\sum_{k=1}^{\lfloor p\rfloor}\left\langle Y^{k}(s), \mathbb{X}_{s, t}^{k}\right\rangle\right| \lesssim c(s, t)^{\frac{\lfloor p\rfloor+1}{p}}, \quad(s, t) \in \Delta_{T} .
$$

Pathwise integral as canonical rough integral

Proposition (C- Perkowski 2018)

Let $p \in 2 \mathbb{N}$ be an even integer, $S \in V_{p}(\pi)$ and \mathbb{K} the canonical reduced rough path of order p associated to S, defined above. Then

$$
\underbrace{\int_{0}^{t}\langle\nabla f(S(s)), \mathrm{d} X(s)\rangle}_{\text {Rough integral }}=\underbrace{\int_{0}^{t}\left\langle\nabla_{p-1} f(S), \mathrm{d} S\right\rangle}_{\text {Pathwise integral }}
$$

where the right hand side is the pathwise integral defined as a limit of compensated Riemann sums.

