Calcul d'Ito sans probabilités: pathwise calculus for non-anticipative functionals of irregular paths

Rama Cont

Anna ANANOVA (Oxford)
Henry CHIU (Imperial College London)
Purba DAS (Oxford)
Nicolas PERKOWSKI (Humboldt Univ, Berlin)

Nicole El Karoui 3 X 25 Conference, Paris 2019

Citations

From References: 95

From Reviews: 11

MR622559 (82j:60098) 60H05

Föllmer, H. [Föllmer, Hans]

Calcul d'Itô sans probabilités. (French)

Seminar on Probability, XV (Univ. Strasbourg, Strasbourg, 1979/1980) (French), pp. 143–150, Lecture Notes in Math., 850, Springer, Berlin, 1981.

L'auteur montre que le calcul d'Itô peut se faire trajectoire par trajectoire, à l'aide des sommes de Riemann par rapport à une classe de fonctions réelles à variation quadratique, x(t), continues à droite et pourvues de limites à gauche.

Il établit que si les mesures $m_n = \sum_{t_i \in \tau_n} (x(t_{i+1}) - x(t_i))^2 \varepsilon_{t_i}$ où les (t_i) appartiennent à une subdivision τ_n dont le pas tend vers 0 avec n, convergent vaguement vers une mesure de fonction de répartition notée $[x,x]_t$ de partie discontinue $\sum_{s \leq t} (x(s) - x(s-))^2$, la formule d'Itô habituelle est vraie pour une fonction F de classe C^2 . Il lui suffit ensuite de montrer que pour une semimartingale les trajectoires sont p.s. à variation quadratique pour une subdivision bien choisie, pour établir la formule d'Itô en toute généralité.

Nicole El Karoui

References

- H Föllmer (1981) Calcul d'Ito sans probabilités, Séminaire de Probabilités.
- A Ananova, R Cont (2017) Pathwise integration with respect to paths of finite quadratic variation, Journal de Mathématiques Pures et appliquées.
- H Chiu, R Cont (2018) On pathwise quadratic variation for cadlag functions, Electronic Communications in Probability.
- R Cont, N Perkowski (2019) Pathwise integration and change of variable formulas for continuous paths with arbitrary regularity, Transactions of the American Mathematical Society, 6:161-186.
- R Cont, P Das (2019) Quadratic variation and quadratic roughness, Working Paper.
- R Cont Functional Ito Calculus and Functional Kolmogorov Equations, (Barcelona Summer School on Stochastic Analysis, July 2012), Springer.

"Calcul d'Itô Sans Probabilités" (Föllmer 1981)

Let $X \in C^0([0,T],\mathbb{R}^d)$ and $f \in C^2(\mathbb{R}^d,\mathbb{R})$. The main idea in the proof of the Ito formula is to consider a sequence of partitions $\pi_n = (0 = t_0^n < t_1^n ... < t_{N(\pi_n)}^n = T)$ of [0,T] with $|\pi_n| \to 0$ and expand increments of f(X(t)) along the partition using a 2nd order Taylor expansion:

$$\begin{split} f(X(t)) - f(X(0)) &= \sum_{\pi_n} f(X(t^n_{i+1})) - f(X(t^n_i)) \\ &= \sum_{\pi_n} \nabla f(X(t^n_i)) . (X(t^n_{i+1}) - X(t^n_i)) \\ &+ \frac{1}{2} t(X(t^n_{i+1}) - X(t^n_i)) \nabla^2 f(X(t^n_i)) . (X(t^n_{i+1}) - X(t^n_i)) + \ r(X(t^n_{i+1}), X(t^n_i)) \end{split}$$

4□ > 4□ > 4 = > 4 = > = 90

R Cont

Summing over π_n we get

$$f(X(t)) - f(X(0)) = S_1(\pi_n, f) + S_2(\pi_n, f) + R(\pi_n, f)$$

By uniform continuity of

$$r(x,y) = f(y) - f(x) - \nabla f(x) \cdot (y-x) - \frac{1}{2}^{t} (y-x) \nabla^{2} f(x) (y-x),$$

$$r(x,y) \leq \varphi(||x-y||) ||x-y||^{2} \quad \text{with} \quad \varphi(u) \stackrel{u \to 0}{\to} 0$$

$$R(\pi_{n}, f) = \epsilon_{n} \sum_{\pi_{n}} ||X(t_{i+1}^{n}) - X(t_{i}^{n})||^{2}.$$

• So both this term and the 'quadratic Riemann sum'

$$S_2(\pi_n, f) = \frac{1}{2} \sum_{\pi_n} {}^t (X(t_{i+1}^n) - X(t_i^n)) \nabla^2 f(X(t_i^n)) . (X(t_{i+1}^n) - X(t_i^n))$$

are controlled by the convergence of (weighted) sums of squared increments of X along π_n .

◆ロ > ←団 > ←豆 > ←豆 > ・豆 ・ 夕 < ○</p>

R Cont

Rough calculus

NEK 3 X 25 4

Quadratic Riemann sums

For d=1: given a path of X, pointwise convergence of 'quadratic Riemann sums'

$$S_2(\pi_n, f) = \frac{1}{2} \sum_{\pi_n} \nabla^2 f(X(t_i^n)) . (X(t_{i+1}^n) - X(t_i^n))^2$$

along the path for every $f \in C^2(\mathbb{R}^d, \mathbb{R})$ is exactly equivalent to the weak convergence of the sequence of discrete measures

$$\mu_n = \sum_{t_j \in \pi_n} (X(t_{j+1}^n) - X(t_j^n))^2 \delta_{t_j}$$

where δ_t denotes a point mass at t. This is a joint property of X and $\pi = (\pi_n)_{n \geq 1}$. This motivated Föllmer's (1981) definition of 'pathwise quadratic variation along a sequence of partitions.

Quadratic variation along a partition sequence

Definition (Föllmer 1981)

Let $\pi_n=(0=t_0^n< t_1^n..< t_{N(\pi_n)}^n=T)$ be a sequence of partitions of [0,T] with $|\pi_n|\to 0$. A càdlàg function $x\in D([0,T],\mathbb{R})$ is said to have finite quadratic variation along the sequence of partitions $\pi=(\pi_n)_{n\geq 1}$ if the weak limit

$$\mu := \lim_{n \to \infty} \sum_{t_i \in \pi_n} (x(t_{j+1}^n) - x(t_j^n))^2 \delta_{t_j}$$

exists and has Lebesgue decomposition given by

$$\mu([0, t]) = [x]_{\pi}^{c}(t) + \sum_{0 < s < t} |\Delta x(s)|^{2}$$

where $[x]_{\pi}^c$ is a continuous and increasing function. $[x]_{\pi}(t) = \mu([0, t])$ is called the quadratic variation of x along π .

We denote $Q_{\pi}([0, T], \mathbb{R})$ the set of functions with this property.

Rough calculus NEK 3 X 25 6 / 46

Multidimensional paths

 $Q_{\pi}([0,T],\mathbb{R}^d)$ is **not** a vector space (Schied 2016) so care must be taken in defining this notion for vector valued functions:

Definition (Paths of finite quadratic variation)

 $x \in Q_{\pi}([0,T],\mathbb{R}^d)$ if, for all $1 \le i,j \le d$, x^i,x^i+x^j in $Q_{\pi}([0,T],\mathbb{R})$. Then $[x]_{\pi}:[0,T] \to S_d^+$ defined by

$$([x]_{\pi})_{i,j}(t) = \frac{1}{2} \left([x^i + x^j]_{\pi}(t) - [x^i]_{\pi}(t) - [x^j]_{\pi}(t) \right)$$

= $[x^i, x^j]_{\pi}^c(t) + \sum_{0 < s \le t} \Delta x^i(s) \Delta x^j(s), \quad i, j = 1, \dots, d$

is an increasing function with values positive symmetric $d \times d$ matrices.

Characterization

Proposition (Henry Chiu & R C (2018))

Let $x \in D([0, T], \mathbb{R}^d)$ and define

$$[x]_{\pi_n}(t) = \sum_{t_j \in \pi_n} (x(t_{j+1}^n \wedge t) - x(t_j^n \wedge t))^t (x(t_{j+1}^n \wedge t) - x(t_j^n \wedge t)) \in S_d^+$$

where S_d^+ is the cone of semidefinite postive symmetricd \times d matrices The following properties are equivalent:

- **1** \times has finite quadratic variation along the sequence of partitions $(\pi_n)_{n\geq 1}$.
- ② The sequence $[x]_{\pi_n}$ converges in Skorokhod (J_1) topology [0, T] to (an increasing function) $[x]_{\pi} \in D([0, T], S_d^+)$.

Föllmer's "pathwise Ito formula"

Proposition (Föllmer, 1981)

 $\forall f \in C^2(\mathbb{R}^d,\mathbb{R}), \forall \omega \in Q_{\pi}([0,T],\mathbb{R}^d)$, the non-anticipative Riemann sums along π

$$\sum_{\pi_n} \nabla f(\omega(t_i^n)).(\omega(t_{i+1}^n) - \omega(t_i^n)) \stackrel{n \to \infty}{\to} \int_0^T \nabla f(\omega(t)).d^{\pi}\omega$$

converge pointwise and

$$f(\omega(t)) - f(\omega(0)) = \int_0^t \nabla f(\omega) . d^{\pi}\omega + \frac{1}{2} \int_0^t < \nabla^2 f(\omega), d[\omega]_{\pi}^c >$$

$$+ \sum_{s < t} f(\omega(s)) - f(\omega(s-)) - \nabla f(\omega(s-)) . \Delta \omega(s)$$

R Cont

Pathwise construction of stochastic integrals

• Föllmer's result allows to define integrals of the type

$$\int \nabla f(\omega(t))d\omega \quad f \in C^2(\mathbb{R}^d,\mathbb{R})$$

as a (pathwise) limit of (left) Riemann sums, for any path ω with finite quadratic variation along (π_n) .

• Admissible integrands are gradients of C^2 functions.

Some questions:

- Extension to path-dependent integrands/ functionals? (with D Fournié, H Chiu)
- Properties of the pathwise integral: Continuity, Isometry...? (with A Ananova)
- Stability/ invariance of construction with respect to the choice of partitions? (with P Das)
- Extension to 'rougher' paths with non-zero higher-order variation? (with N Perkowski)

R Cont Rough calculus NEK 3 X 25 10 / 46

Invariance with respect to sequence of partitions

Joint work with Purba DAS (Oxford).

Consider two sequences of partitions π, τ and a continuous path $\omega \in Q_{\pi}([0, T], \mathbb{R}^d) \cap Q_{\tau}([0, T], \mathbb{R}^d)$. For all $f \in C^2(\mathbb{R}^d)$,

$$egin{aligned} f(\omega(t)) - f(\omega(0)) &= \int_0^t
abla f(\omega).d^\pi\omega + rac{1}{2} \int_0^t <
abla^2 f(\omega), d[\omega]_\pi > \ &= \int_0^t
abla f(\omega).d^ au\omega + rac{1}{2} \int_0^t <
abla^2 f(\omega), d[\omega]_ au > \end{aligned}$$

The pathwise integrals are equal if and only if the quadratic variations along π^n and τ^n are equal : $[\omega]_{\pi} = [\omega]_{\tau}$.

Under what conditions on the path ω and the partitions is this the case?

R Cont

Rough calculus

NEK 3 X 25

Invariance with respect to sequence of partitions

Unfortunately pathwise quadratic variation **does** depend on the sequence of partitions...

- Freedman (1983): Let $\omega \in C^0([0,T],\mathbb{R}^d)$. There exists a sequence of partitions (π^n) such that $[\omega]_{\pi}=0$.
- Davis, Obloj and Siorpaes (2018): for *any* increasing function $A:[0,T]\to[0,\infty)$ one can construct a sequence of partitions $\pi=(\pi^n)$ such that $[\omega]_\pi(t)=A(t)$.
- On the other hand we know that for Brownian paths, quadratic variation is a.s. equal to t along any *refining* partition (Lévy 1934) and *any* sequence of partitions with mesh $o(1/\log n)$ (Dudley 1973).
- So there must be a large class of functions which 'locally behave like Brownian motion' for which one can obtain an invariance property of quadratic variation with respect to a (large) class of partition sequences.

Well-balanced sequences of partitions

Let
$$\underline{\pi}^n = \inf_{i=0..N(\pi^n)-1} |t_{i+1}^n - t_i^n|, |\pi^n| = \sup_{i=0..N(\pi^n)-1} |t_{i+1}^n - t_i^n|$$

Definition

We call the sequence of partitions $(\pi^n)_{n\geq 1}$ well-balanced if

$$\exists c > 0, \qquad \forall n \geq 1, \quad \frac{|\pi^n|}{\pi^n} \leq c.$$
 (1)

This condition means that the intervals in the partition π^n are asymptotically comparable.

Since $\underline{\pi^n} N(\pi^n) \leq T$, for a well-balanced sequence of partitions we have

$$|\pi^n| \le c\underline{\pi^n} \le \frac{cT}{N(\pi^n)}.$$
 (2)

R Cont

Averaging lemma

If X has quadratic variation along (π^n) then it also has quadratic variation along any subsequence $(\pi^{l(n)})$. Comparing sum of squares along (π^n) and the subsequence we obtain the following property:

Lemma (Cross-products of increments average to zero)

Let $X \in C^{\alpha}([0,T],\mathbb{R}^d)$ for some $\alpha > 0$ and $\sigma^n = \{t_i^n, i = 1..N(\sigma_n)\}$ be a well-balanced sequence of partitions of [0,T] such that $X \in Q_{\sigma}([0,T],\mathbb{R}^d)$. Let $\kappa > \frac{1}{\alpha}$. and $(\sigma^{l_n})_{n \geq 1}$ by a subsequence of σ^n with

$$N(\sigma^{l_n-1}) \leq N(\sigma^n)^{\kappa} \leq N(\sigma^{l_n}).$$

Define for $k = 1 \cdots N(\sigma^n)$, $p(k, n) = \inf\{m \ge 1 : t_m^{l_n} \in (t_k^n, t_{k+1}^n]\}$. Then

$$\sum_{k=1}^{N(\sigma^n)} \sum_{p(k,n) \leq i,j \leq p(k+1,n)-1} \left(X(t_{i+1}^{l_n}) - X(t_i^{l_n}) \right)^t \left(X(t_{j+1}^{l_n}) - X(t_j^{l_n}) \right) \to 0.$$

◆ロト ◆団ト ◆重ト ◆重ト ■ めなぐ

14 / 46

nt Rough calculus NEK 3 X

Coarsening of a well-balanced partition

Coarsening of a partition corresponds to subsampling/ dropping points:

Definition (β -coarsening)

Let $\pi^n=(0=t_0^n< t_1^n..< t_{N(\pi^n)}^n=T)$ be a well-balanced sequence of partitions of [0,T] with vanishing mesh $|\pi^n|\to 0$ and $0\le \beta<1$. A β -coarsening of π is a sequence of subpartitions of π^n

$$A^{n} = (0 = t^{n}_{\rho(n,0)} < t^{n}_{\rho(n,1)} < \cdots < t^{n}_{\rho(n,N(A^{n}))} = T)$$

such that $(A^n)_{n\geq 1}$ is a well-balanced partition of [0,T] and $|A^n|\sim |\pi^n|^{\beta}$.

Since $|\pi^n| \ll |A^n| \sim c|\pi^n|^{\beta}$, as *n* increases the number of points of π^n in each interval of A^n goes to infinity.

Quadratic roughness along a sequence of partitions

Let $\pi^n = (0 = t_0^n < t_1^n ... < t_{N(\pi^n)}^n = T)$ be a well-balanced sequence of partitions of [0, T] with $|\pi^n| \to 0$.

Definition (Quadratic roughness along a sequence of partitions)

 $X \in Q_{\pi}([0,T],\mathbb{R}^d)$ is quadratically rough along π with coarsening index $\beta < 1$ if

- $0 < [X]_{\pi} < \infty$ is strictly increasing
- For any β -coarsening $(A^n)_{n\geq 1}$ of π and any $t\in (0,T]$ we have:

$$\sum_{j=1}^{N(A^n)} \sum_{t_i^n,t_{i'}^n \in [A^n_{i-1},A^n_i)} \left(X(t_{i+1}^n \wedge t) - X(t_i^n \wedge t) \right)^t \left(X(t_{i'+1}^n \wedge t) - X(t_{i'}^n \wedge t) \right) \overset{n \to \infty}{\to} 0.$$

 $R^{\beta}_{\pi}([0,T],\mathbb{R}^d)\subset Q_{\pi}([0,T],\mathbb{R}^d)$: set of paths with quadratic roughness property

(미) (리) (리) (리) (리)

Quadratic roughness along a sequence of partitions

Intuitively, quadratic roughness of X along $(\pi^n)_{n\geq 1}$ means that the increments of f sampled along π^n behave like a '2nd order white noise' as we refine the partition:

$$\sum_{j=1}^{N(A^n)} \sum_{t_i^n, t_{i'}^n \in [A_{j-1}^n, A_j^n)} \left(X(t_{i+1}^n \wedge t) - X(t_i^n \wedge t) \right)^t \left(X(t_{i'+1}^n \wedge t) - X(t_{i'}^n \wedge t) \right) \stackrel{n \to \infty}{\to} 0.$$

As expected, Brownian paths satisfy this property:

Proposition (Quadratic roughness of Brownian paths (C.-Das 2019))

Let W be a Wiener process, T>0 and $0<\beta<1$. Then the sample paths of W almost-surely satisfy the quadratic roughness property with coarsening index β along any well-balanced partition sequence with mesh $o(1/(\log n)^{1/\beta})$:

$$|\pi^n| = o(1/(\log n)^{1/\beta}) \Rightarrow \mathbb{P}(W \in R_{\pi}^{\beta}([0, T])) = 1.$$

←□ → ←□ → ← □ → ← □ → ○

R Cont

Rough calculus

NEK 3 X 25

Invariance of quadratic variation for rough functions

Our main result is that quadratic roughness implies invariance of pathwise quadratic variation along well-balanced sequences of partitions:

Theorem (Cont & Das (2019))

Let $X \in C^{\alpha}([0,T],\mathbb{R}^d) \cap Q_{\sigma}([0,T],\mathbb{R}^d)$ for some well-balanced sequence of partitions $\sigma = (\sigma^n)$ of [0,T] with $\limsup |\sigma^n|/|\sigma^{n+1}|_{j\infty}$. If $x \in R^{\alpha}_{\sigma}([0,T])$ then for any other well-balanced sequence of partitions $\tau = (\tau^n)_{n \geq 1}$,

- If $x \in Q_{\tau}([0,T],\mathbb{R}^d)$ then $[x]_{\sigma} = [x]_{\tau}$.
- There exists a subsequence $\pi^n = \tau^{k(n)}$ of τ such that $x \in Q_{\pi}([0, T], \mathbb{R}^d)$ and $[x]_{\sigma} = [x]_{\pi}$.

Extension to non-anticipative Functionals

Denote $\omega_t = \omega(t \wedge .)$ the past i.e. the path stopped at t.

Definition (Non-anticipative Functionals)

A causal, or non-anticipative functional is a functional $F:[0,T]\times D([0,T],\mathbb{R}^d)\mapsto \mathbb{R}$ whose value only depends on the past:

$$\forall \omega \in \Omega, \quad \forall t \in [0, T], \qquad F(t, \omega) = F(t, \omega_t).$$
 (3)

Causal functional= map on the space Λ_T^d of stopped paths, defined as the quotient space:

$$\Lambda_T^d := ([0,T] \times D([0,T],\mathbb{R}^d)) / \sim$$

where $(t,x) \sim (t',x') \leftrightarrow t = t', x_t = x_t'$. Λ_T^d is equipped with a metric

$$d_{\infty}((t,x),(t',x')) = \sup_{u \in [0,T]} |x(u \wedge t) - x'(u \wedge t')| + |t-t'|.$$

 $\mathbb{C}^{0,0}(\Lambda^d_T)=\text{continuous maps }(\Lambda^d_T,d_\infty)\to\mathbb{R}.$

4□ > 4□ > 4□ > 4 = > 4 = > 4 =

19 / 46

Rough calculus NEK 3 X 2

Dupire's functional derivatives

Definition (Horizontal and vertical derivatives)

A non-anticipative functional F is said to be:

• horizontally differentiable at $(t,\omega) \in \Lambda_T^d$ if the finite limit exists

$$\mathcal{D}F(t,\omega) := \lim_{h\to 0+} \frac{F(t+h,\omega_t) - F(t,\omega_t)}{h}.$$

ullet vertically differentiable at $(t,\omega)\in \Lambda^d_T$ if the map

$$\mathbb{R}^d \to \mathbb{R}, \ e \mapsto F(t, \omega(t \wedge .) + e1_{[t,T]})$$

is differentiable at 0; its gradient at 0 is denoted by $\nabla_{\omega} F(t, \omega)$.

Note that $\mathcal{D}F(t,\omega)$ is **not** the partial derivative in t:

$$\mathcal{D}F(t,\omega) \neq \partial_t F(t,\omega) = \lim_{h\to 0} \frac{F(t+h,\omega) - F(t,\omega)}{h}.$$

R Cont

Smooth functionals

Definition $(\mathbb{C}^{1,p}_b(\Lambda^d_T)$ functionals)

We denote by $\mathbb{C}^{1,p}_b(\Lambda^d_T)$ the set of non-anticipative functionals $F \in \mathbb{C}^{0,0}_l(\Lambda^d_T)$, such that

- ullet F is horizontally differentiable with $\mathcal{D}F$ continuous at fixed times,
- F is p times vertically differentiable with $\nabla^j_\omega F \in \mathbb{C}^{0,0}_I(\Lambda^d_T)$ for j=1..p
- $\mathcal{D}F$, $\nabla^j_{\omega}F \in \mathbb{B}(\Lambda^d_T)$ for j=1..p.

Example (Cylindrical functionals)

For
$$g \in C^0(\mathbb{R}^{d \times n}), h \in C^k(\mathbb{R}^d)$$
 with $h(0) = 0$. Then

$$F(t,\omega) = h(\omega(t) - \omega(t_n - 1)) \quad 1_{t \ge t_n} \quad g(\omega(t_1 - 1), \omega(t_2 - 1), \omega(t_n - 1)) \quad \text{is } \mathbb{C}_b^{1,k}$$

$$\mathcal{D}_t F(\omega) = 0, \quad \nabla_{\omega}^j F(t, \omega) = h^{(j)}(\omega(t) - \omega(t_n -)) \mathbf{1}_{t \geq t_n} g(\omega(t_1 -), ..., \omega(t_n -))$$

 $\mathbb{S}(\Lambda_T, \pi_n) := \text{simple predictable cylindrical functionals along } \pi_n$

$$\mathbb{S}(\Lambda_T,\pi) := \cup_{n>1} \mathbb{S}(\Lambda_T,\pi_n) \mathsf{x}$$

R Cont Rough calculus NEK 3 X 25 21 / 46

Examples of smooth functionals

Example (Integral functionals)

For
$$g \in C_0(\mathbb{R}^d)$$
, $Y(t) = \int_0^t g(X(u))\rho(u)du = F(t,X_t)$ where

$$F(t,\omega) = \int_0^t g(\omega(u))\rho(u)du \tag{4}$$

 $F \in \mathbb{C}^{1,\infty}_b$, with:

$$\mathcal{D}_t F(\omega) = g(\omega(t))\rho(t) \qquad \nabla_{\omega}^j F(t,\omega) = 0 \tag{5}$$

Functional change of variable formula: p = 2

Theorem (R.C.- Fournié, 2010)

Let $\omega \in V_2(\pi) \cap C^0([0,T],\mathbb{R}^d)$ and $\omega^n := \sum_{i=0}^{m(n)-1} \omega(t^n_{i+1} -) \mathbf{1}_{[t^n_i,t^n_{i+1})} + \omega(T) \mathbf{1}_{\{T\}}$. Then for any $F \in \mathbb{C}^{1,2}_b(\Lambda^d_T)$, the pointwise limit of Riemann sums

$$\int_{0}^{T} \nabla_{\omega} F(t, \omega) d^{\pi} \omega := \lim_{n \to \infty} \sum_{i=0}^{m(n)-1} \nabla_{\omega} F(t_{i}^{n}, \omega^{n}) (\omega(t_{i+1}^{n}) - \omega(t_{i}^{n}))$$
exists and
$$F(T, \omega) = F(0, \omega) + \int_{0}^{T} \nabla_{\omega} F(t, \omega) \cdot d^{\pi} \omega$$

$$+ \int_{0}^{T} \mathcal{D} F(t, \omega) dt + \int_{0}^{T} \frac{1}{2} tr \left(\nabla_{\omega}^{2} F(t, \omega) d[\omega]_{\pi}^{c}(t) \right).$$

4□ > 4□ > 4 = > 4 = > = 90

R Cont

Rough calculus

These result allows to construct $\int_0^{\cdot} \nabla_{\omega} F$ as a pointwise limit of non-anticipative 'Riemann sums':

$$\int\limits_0^T \nabla_\omega F(t,\omega_{t-}) \cdot d^\pi \omega = \lim_{n \to \infty} \sum_{i=0}^{m(n)-1} \nabla_\omega F(t_i^n,\omega^n) (\omega(t_{i+1}^n) - \omega(t_i^n))$$

Remark

$$F \in \mathcal{R}(\Lambda_T^d), \ \omega \in C^{\frac{1}{2}-}([0,T],\mathbb{R}^d) \Rightarrow \nabla_{\omega}F(t,\omega) \in C^{\frac{1}{2}-}([0,T],\mathbb{R}^d).$$

The pathwise integral is a **strict extension** of the Young integral.

R Cont

Rough calculus

NEK 3 X 25

Denote
$$C^{\frac{1}{2}-}([0,T],\mathbb{R}^d) = \bigcap_{\nu < 1/2} C^{\nu}([0,T],\mathbb{R}^d)$$

Theorem (Pathwise Isometry formula, A. Ananova, R. C. 2016)

Let $\omega \in Q_{\pi}([0,T],\mathbb{R}^d) \cap C^{1/2-}([0,T],\mathbb{R}^d)$ where $|\pi^n| \to 0$. If $F \in \mathbb{C}^{1,2}(\Lambda_T)$ is Lipschitz-continuous and $\nabla_{\omega} F \in \mathbb{C}^{1,1}_b(\Lambda_T^d)$ then

$$F(.,\omega)\in Q_\pi([0,T],\mathbb{R}^d), \qquad \int_0^. \;
abla_\omega F(.,\omega).d^\pi\omega\in Q_\pi([0,T],\mathbb{R}^d)$$

$$[F(t,\omega)]^{\pi}(t) = \left[\int_{0}^{\cdot} \nabla_{\omega} F(s,\omega) . d^{\pi}\omega\right]^{\pi}(t) = \int_{0}^{t} \langle {}^{t}\nabla_{\omega} F(s,\omega) . \nabla_{\omega} F(s,\omega) . d[\omega]^{\pi}(s) \rangle.$$

This is a **pathwise version of the Ito isometry formula**: if we take expectations on both sides with respect to the Wiener measure we recover the well-known Ito isometry.

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶ 臺 釣۹@

R Cont

Rough calculus

NEK 3 X 25

Conditional expectations as smooth functionals

Vertical smoothness: $H:(D([0,T],R),\|.\|_{\infty})\mapsto \mathbb{R}$ is vertically smooth on continuous paths if for $(t,\omega)\in [0,T]\times C^0([0,T],\mathbb{R}^d)$, the map

$$g^{H}(.;t,\omega):e\in\mathbb{R}^{d}\rightarrow \quad g^{H}(e)=H\left(\omega+e1_{[t,T]}\right),$$
 (6)

is twice differentiable at 0, with derivatives bounded in a neighborhood of 0, uniformly with respect to $(t,\omega) \in [0,T] \times C^0([0,T],\mathbb{R}^d)$.

Proposition (C & Riga 2016)

Let $\mathbb Q$ be the Wiener process and $H:(D([0,T],R),\|.\|_\infty)\mapsto \mathbb R$ be $\mathbb Q$ -integrable, Lipschitz and vertically smooth. Then there exists $F\in \mathbb C^{0,2}_b(\mathcal W_T)$ such that $F(t,X_t)=E^{\mathbb Q^\sigma}[H(X)|\mathcal F_t^X]\ \mathbb Q^\sigma-a.s.$

El Karoui, Jeanblanc and Shreve (1997) revisited

Proposition (Pathwise analysis of hedging strategies)

Let $\omega \in Q_{\pi}([0,T],\mathbb{R}_+)$ be a strictly positive price path whose quadratic variation $[\omega]$ along $\pi = (\pi_n)$ is absolutely continuous.

Denote
$$\sigma(t,\omega)^2 = \frac{1}{\omega(t)^2} \frac{d[\omega]}{dt}$$

If there exists $F \in \mathbb{C}^{1,2}(\mathcal{W}_T)$ such that

$$F(t,\omega) = E[H|S_t = \omega_t]$$

A delta-hedging strategy for H computed in a Black-Scholes model with volatility σ_0 leads to a profit/loss along the path ω given by

$$\int_0^T \frac{\sigma_0^2 - \sigma^2(t,\omega)}{2} \omega(t)^2 e^{\int_t^T r(s)ds} \underbrace{\nabla_\omega^2 F(t,\omega)}_{\Gamma(t)} dt$$

R Cont

p-th variation along a sequence of partitions

Define the *oscillation* of $S \in C([0, T], \mathbb{R})$ along π_n as

$$osc(S, \pi_n) := \max_{[t_j, t_{j+1}] \in \pi_n} \max_{r, s \in [t_j, t_{j+1}]} |S(s) - S(r)|.$$

Definition (p-th variation along a sequence of partitions)

Let p > 0. Let $S \in C([0, T], \mathbb{R})$ with $osc(S, \pi_n) \to 0$. The sequence of measures

$$\mu^n = \sum_{[t_j, t_{j+1}] \in \pi_n} \delta(\cdot - t_j) |S(t_{j+1}) - S(t_j)|^p$$

converges weakly to a measure μ without atoms \iff There exists a continuous increasing function $[S]^p$ such that

$$\forall t \in [0, T], \qquad \sum_{\pi_n} |S(t_{j+1} \wedge t) - S(t_j \wedge t)|^p \overset{n \to \infty}{\to} [S]^p(t).$$

Then $[S]^p(t) := \mu([0,t])$ and we write $S \in V_p(\pi)$ and $[S]^p(t) := \mu([0,t])$ is the p-th variation of S along π .

ont Rough calculus

p-th variation along a sequence of partitions

Lemma

Let $S \in C([0,T],\mathbb{R})$. $S \in V_p(\pi)$ if and only if there exists a continuous increasing function $[S]^p$ such that

$$\forall t \in [0, T], \qquad \sum_{\pi_n} |S(t_{j+1} \wedge t) - S(t_j \wedge t)|^p \overset{n \to \infty}{\to} [S]^p(t).$$

If this property holds then the convergence is uniform.

Examples of processes with sample paths in $V_p(\pi)$

Paths in $V_p(\pi)$ do not necessarily have finite *p*-variation.

- If B_H is a **fractional Brownian motion** B_H with Hurst index $H \in (0,1)$ and $\pi_n = \{kT/n : k \in \mathbb{N}_0\} \cap [0,T]$, then $B_H \in V_{1/H}(\pi)$ and $[B_H]^{1/H}(t) = t\mathbb{E}[|B_H(1)|^{1/H}]$, while $||B_H||_{p-var} = \infty$ almost surely for p = 1/H.
- Stochastic heat equation: if u(t,x) is the solution of the stochastic heat equation with white noise on $[0,T]\times\mathbb{R}$ then $u(.,x)\in V_4([0,T])$, while $\|u(.,x)\|_{4-var}=\infty$.
- Reflected Brownian motion in wedge (limit process arising in queueing theory).

'Rough' Change of variable formula

Theorem (R.C- Perkowski (2018))

Let $p \in 2\mathbb{N}$ be even, $S \in V_p(\pi)$. Then for every $f \in C^p(\mathbb{R}, \mathbb{R})$

$$f(S(t)) - f(S(0)) = \int_0^t \langle \nabla_{p-1} f(S), dS \rangle + \frac{1}{p!} \int_0^t f^{(p)}(S(s)) d[S]^p(s),$$

where the integral is defined as a (pointwise) limit of compensated Riemann sums:

$$egin{aligned} &\int_0^t
abla_{p-1} f \circ S.dS := \int_0^t <
abla_{p-1} f(S)(u), dS(u) > \ \end{aligned} \ = \lim_{n o \infty} \sum_{x} \sum_{k=1}^{p-1} rac{f^{(k)}(S(t_j))}{k!} (S(t_{j+1} \wedge t) - S(t_j \wedge t))^k \end{aligned}$$

In particular we construct a pathwise Ito-type integral + change of variable formula for FBM with any Hurst exponent.

31 / 46

Cont Rough calculus NEK 3 X 25

Pathwise integral

The pathwise integral

$$\int_0^t \langle \nabla_{p-1} f \circ S, dS \rangle := \lim_n R_{p-1}(f, S, \pi_n)$$

is a pointwise limit of compensated Riemann sums

$$R_{p-1}(f,S,\pi_n) = \sum_{\pi_n} \sum_{k=1}^{p-1} \frac{f^{(k)}(S(t_j))}{k!} (S(t_{j+1} \wedge t) - S(t_j \wedge t))^k$$

It should be really seen as an integral of the (p-1)-jet $\nabla_{p-1}f$ of f

$$\nabla_{p-1}f(x) = (f^{(k)}(x), k = 0, 1, ..., p-1)$$

with respect to a differential structure of order p-1 constructed along $S \in V_p(\pi)$ using the powers of increments up to order p-1.

Isometry formula for the pathwise integral

The following result extends the pathwise isometry formula obtained in (Ananova-C. 2017) for p=2:

Theorem (Isometry formula (C.-Perkowski 2018))

Let $p \in 2\mathbb{N}$ be an even integer, (π_n) a sequence of partitions with mesh size going to zero, and $S \in V_p(\pi) \cap C^{\alpha}([0,T],\mathbb{R})$ for some $\alpha > 0$. Then for any $f \in C^p(\mathbb{R}^d)$,

$$f\circ S\in V_p(\pi)$$

$$\int_0^{\cdot}\nabla_{p-1}f\ dS:=\int_0^{\cdot}<\nabla_{p-1}f(S),dS>\in V_p(\pi)$$

$$[f(S)]^p(T) = [\int_0^{\cdot} \nabla_{p-1} f \ dS]^p(T) = \int_0^{T} |f'(S)|^p d[S]^p = \|f' \circ S\|_{L^p([0,T],d[S]^p)}^p.$$

R Cont

Rough calculus

Pathwise local time of order p

Definition (Local time of order p)

Let $p\in\mathbb{N}$ be an even integer and let $q\in[1,\infty]$. A continuous path $S\in C([0,T],\mathbb{R})$ has an L^q -local time of order p-1 along a sequence of partitions $\pi=(\pi_n)_{n\geq 1}$ if $osc(S,\pi_n)\to 0$ and

$$L^{\pi_n,p-1}_t(\cdot) = \sum_{t_j \in \pi} \mathbf{1}_{\{S(t_j \wedge t),S_{t_{j+1} \wedge t}\}}(\cdot) |S(t_{j+1} \wedge t) - \cdot|^{p-1}$$

converges weakly in $L^q(\mathbb{R})$ to a weakly continuous map $L\colon [0,T]\to L^q(\mathbb{R})$ which we call the *order p local time* of S. We denote $\mathcal{L}^q_p(\pi)$ the set of continuous paths S with this property.

Intuitively, the limit $L_t(x)$ then measures the rate at which the path S accumulates p-th order variation near x.

Theorem (Higher order Tanaka-Wuermli formula)

Let $p \in 2\mathbb{N}$ be an even integer, $q \in [1,\infty]$ with conjugate exponent q' = q/(q-1). Let $f \in C^{p-1}(\mathbb{R},\mathbb{R})$ and assume that $f^{(p-1)}$ is weakly differentiable with derivative in $L^{q'}(\mathbb{R})$. Then for any $S \in \mathcal{L}_p^q(\pi)$

$$\int_0^t \nabla_{p-1} f \circ S dS := \lim_{n \to \infty} \sum_{[t_j, t_{j+1}] \in \pi_n} \sum_{k=1}^{p-1} \frac{f^{(k)}(S(t_j))}{k!} (S(t_{j+1} \wedge t) - S(t_j \wedge t))^k$$

exists and the following change of variable formula holds:

$$f(S(t)) - f(S(0)) = \int_0^t < \nabla_{p-1} f \circ S, dS > + \frac{1}{(p-1)!} \int_{\mathbb{R}} f^{(p)}(x) L_t(x) dx.$$

R Cont

Rough calculus

Multidimensional paths: Symmetric tensors

A symmetric p-tensor T on \mathbb{R}^d is a p-tensor invariant under any permutation $\sigma \in \mathfrak{S}_p$ of its arguments: for $(v_1, v_2, \dots, v_p) \in (\mathbb{R}^d)^p$

$$\sigma T(v_1,\ldots,v_p) := T(v_{\sigma 1},v_{\sigma 2},\ldots,v_{\sigma p}) = T(v_1,v_2,\ldots,v_p)$$

The space $\operatorname{Sym}_p(\mathbb{R}^d)$ of symmetric tensors of order p on \mathbb{R}^d is naturally isomorphic to the dual of the space $\mathbb{H}_p[X_1,...,X_d]$ of homogeneous polynomials of degree p on \mathbb{R}^d .

$$\mathbb{S}_p(\mathbb{R}^d) = \bigoplus_{k=0}^p \operatorname{Sym}_k(\mathbb{R}^d).$$

For any p-tensor T we define the symmetric part

$$\operatorname{Sym}(T) := \frac{1}{\rho!} \sum_{\sigma \in \mathfrak{S}_k} \sigma T \in \operatorname{Sym}_{\rho}(\mathbb{R}^d)$$

where \mathfrak{S}_p of $\{1,\ldots,k\}$ is the group of permutations of $\{1,2,\ldots,p\}$

Extension to multidimensional functions

Consider now a continuous \mathbb{R}^d -valued path $S \in C([0,T],\mathbb{R}^d)$ and a sequence of partitions $\pi_n = \{t_0^n,\ldots,t_{N(\pi_n)}^n\}$ with $t_0^n = 0 < \ldots < t_k^n < \ldots < t_{N(\pi_n)}^n = T$. Then

$$\mu^n = \sum_{\pi_n} \underbrace{\left(S(t_{j+1}) - S(t_j)\right) \otimes ... \otimes \left(S(t_{j+1}) - S(t_j)\right)}_{\text{p times}} \delta(\cdot - t_j)$$

defines a tensor-valued measure on [0,T] with values in $\operatorname{Sym}_p(\mathbb{R}^d)$. This space of measures is in duality with the space $C([0,T],\mathbb{H}_p[X_1,...,X_d])$ of continuous functions taking values in homogeneous polynomials of degree p i.e. homogeneous polynomials of degree p with continuous time-dependent coefficients. This motivates the following definition:

Definition (p-th variation of a multidimensional function)

Let $p \in 2\mathbb{N}$ be an (even) integer, and $S \in C([0,T],\mathbb{R}^d)$ a continuous path and $\pi = (\pi_n)_{n \geq 1}$ a sequence of partitions of [0,T]. $S \in C([0,T],\mathbb{R}^d)$ is said to have a p-th variation along $\pi = (\pi_n)_{n \geq 1}$ if $osc(S,\pi_n) \to 0$ and the sequence of tensor-valued measures

$$\mu_{\mathsf{S}}^n = \sum_{\pi_n} (S(t_{j+1}) - S(t_j))^{\otimes p} \quad \delta(\cdot - t_j)$$

converges to a $\operatorname{Sym}_{\rho}(\mathbb{R}^d)$ -valued measure μ_S without atoms in the following sense: $\forall f \in C([0,T],\mathbb{S}_p(\mathbb{R}^d))$,

$$< f, \mu_n > = \sum_{\pi_n} < f(t_j), (S(t_{j+1}) - S(t_j))^{\otimes p} > \to^{n \to \infty} < f, \mu_S > .$$
 (7)

We write $S \in V_p(\pi)$ and call $[S]^p(t) := \mu([0, t])$ the *p-th variation* of S.

R Cont

Rough calculus

NEK 3 X 25 38 / 46

Theorem (Rough change of variable formula: multi-dim case)

Let $p \in 2\mathbb{N}$ be an even integer, let (π_n) be a sequence of partitions of [0,T] and $S \in V_p(\pi) \cap C([0,T],\mathbb{R}^d)$. Then for every $f \in C^p(\mathbb{R},\mathbb{R})$ the limit of compensated Riemann sums

$$\int_0^t <\nabla_{p-1} f \circ S, dS> := \lim_{n \to \infty} \sum_{\pi_n} \sum_{k=1}^{p-1} \frac{1}{k!} <\nabla^k f(S(t_j)), (S(t_{j+1} \wedge t) - S(t_j \wedge t))^{\otimes k}>$$

exists for every $t \in [0, T]$ and satisfies

$$f(S(t)) - f(S(0)) = \int_0^t < \nabla_{p-1} f \circ S, dS > + \frac{1}{p!} \int_0^t < \nabla^p f(S(t)), d[S]^p(u) > .$$

R Cont

Rough calculus

NEK 3 X 25 39

Functional change of variable formula: general case

Theorem (C.- Perkowski, 2018)

Let $p \in 2\mathbb{N}$ $F \in \mathbb{C}^{1,p}_b(\Lambda_T)$, and $S \in V_p(\pi)$ for a sequence of partitions (π_n) with $|\pi_n| \to 0$. Then the limit $\int_0^t < \mathbb{T}_{p-1}F(.,S), dS >=$

$$\lim_{n\to\infty}\sum_{[t_i,t_{i+1}]\in\pi_n}\sum_{k=1}^{p-1}\frac{1}{k!}\nabla_{\omega}^kF(t_j,S_{t_j-}^n)(S(t_{j+1}\wedge t)-S(t_j\wedge t))^k,\quad\text{exists and}$$

$$F(t,S_t) = F(0,S_0) + \int_0^t \mathcal{D}F(s,S_s)ds$$

$$+\int_{0}^{t} < \mathbb{T}_{p-1}F(.,S), \ dS > +\frac{1}{p!}\int_{0}^{t} \nabla_{\omega}^{p}F(s,S_{s})d[S]^{p}(s)$$

This extends the pathwise integral to all 'closed (p-1) forms':

$$\mathbb{T}_{p-1}\mathbb{C}_b^{1,p}:=\{\mathbb{T}_{p-1}F,\ F\in\mathbb{C}_b^{1,\widetilde{p}}(\Lambda_T)\}$$

ont Rough calculus

A higher order isometry formula

The following result extends the isometry formula for the pathwise integral obtained in the case p=2 by (Ananova-C. 2017):

Theorem (Isometry formula)

Let $p \in \mathbb{N}$ be an even integer, (π_n) a sequence of partitions with mesh size going to zero, and $S \in V_p(\pi) \cap C^\alpha([0,T],\mathbb{R})$ with $\alpha > ((1+\frac{4}{p})^{1/2}-1)/2$. Let $F \in \mathbb{C}^{1,p}_b(\Lambda_T) \cap \operatorname{Lip}(\Lambda_T,d_\infty)$ be such that $\nabla_\omega F \in \mathbb{C}^{1,p-1}_b(\Lambda_T)$. Then

$$F(\cdot,S) \in V_p(\pi), \qquad \int_0^{\cdot} \mathbb{T}_{p-1} F(\cdot,S) dS \in V_p(\pi) \qquad \text{and}$$

$$[\int_0^{\cdot} \mathbb{T}_{p-1} F(\cdot, S) dS]^p(t) = \int_0^t |\nabla_{\omega} F(s, S)|^p d[S]^p(s) = \|\nabla_{\omega} F(\cdot, S)\|_{L^p([0, T], d[S]^p)}^p.$$

Rough-smooth decomposition

'Signal+noise' decomposition for smooth functionals of a rough process:

Theorem (Rough-smooth decomposition: general case)

Let $p \in \mathbb{N}$ be an even integer, let $\alpha > ((1 + \frac{4}{p})^{1/2} - 1)/2$, and let $S \in V_p(\pi) \cap C^{\alpha}([0, T], \mathbb{R})$ be a path with strictly increasing p-th variation $[S]^p$ along (π_n) . Then any $X \in \mathbb{C}^{1,p}_b(S)$ admits a unique decomposition

$$\exists ! \phi \in \mathbb{T}_{p-1}\mathbb{C}_b^{1,p}, \qquad X = X(0) + A + \int_0^t \langle \phi \circ S, dS \rangle$$

where ϕ is a closed (p-1)-form and $[A]^p=0$.

- For S martingale, p=2 this is a 'Doob Meyer' decomposition. However our formulation is strictly pathwise/ non-probabilistic.
- Such pathwise decompositions were obtained in the rough path setting by Hairer & Pillai (2013), Friz & Shekhar (2013).

4 D > 4 D > 4 E > 4 E > E 9 Q C

R Cont

Relation with 'rough path integration'

Define a *control function* as a continuous map $c: \Delta_T \to \mathbb{R}_+$ such that c(t,t)=0 and $c(s,u)+c(u,t)\leq c(s,t)$.

Definition (Reduced rough path of order p)

Let $p \geq 1$. A reduced rough path of finite p-variation is a map $\mathbb{X} = (1, \mathbb{X}^1, \dots, \mathbb{X}^{\lfloor p \rfloor}) \colon \Delta_T \longrightarrow \mathbb{S}_{\lfloor p \rfloor}(\mathbb{R}^d),$ such that

$$\sum_{k=1}^{\lfloor p
floor} |\mathbb{X}_{s,t}^k|^{p/k} \leq c(s,t), \qquad (s,t) \in \Delta_T;$$

for some control function c and the reduced Chen relation holds

$$\mathbb{X}_{s,t} = \mathrm{Sym}\big(\mathbb{X}_{s,u} \otimes \mathbb{X}_{u,t}\big), \qquad (s,u), (u,t) \in \Delta_T.$$

R Cont

Rough calculus

A canonical reduced rough path for $S \in V_p(\pi)$

Lemma

Let $p \geq 1$, $S \in C([0, T], \mathbb{R}^d) \cap V_p(\pi)$ where

$$\pi_n = (t_k^n), \qquad t_0^n = 0, \qquad t_{k+1}^n = \inf\{t \in [t_k^n, T], \quad |S(t) - S(t_k^n)| \ge 2^{-n}\}.$$

Then for any q > p with $\lfloor q \rfloor = \lfloor p \rfloor$ we obtain a reduced rough path of finite q-variation by setting $\mathbb{X}^0_{s,t}(S) := 1$,

$$\mathbb{X}_{s,t}^k(S) := rac{1}{k!} (S(t) - S(s))^{\otimes k}, \qquad k = 1, \dots, \lfloor p \rfloor - 1,$$
 $\mathbb{X}_{s,t}^{\lfloor p \rfloor}(S) := rac{1}{\lfloor p \rfloor!} (S(t) - S(s))^{\otimes \lfloor p \rfloor} - rac{1}{\lfloor p \rfloor!} ([S]^p(t) - [S]^p(s)).$

Furthermore $\mathbb{X}: S \mapsto \mathbb{X}$ is a non-anticipative functional.

R Cont

Rough calculus

NEK 3 X 25

Proposition

Let $p \geq 1$, let \mathbb{X} be a reduced rough path of finite p-variation and let $Y \in \mathcal{D}_{\mathbb{X}}^{\lfloor p \rfloor/p}([0,T])$. Then the 'rough path integral'

$$I_{\mathbb{X}}(Y)(t) = \int_0^t \langle Y(s), \mathrm{d}\mathbb{X}(s) \rangle = \lim_{\substack{\pi \in \Pi([0,t]) \\ |\pi| \to 0}} \sum_{[t_j, t_{j+1}] \in \pi} \sum_{k=1}^{\lfloor p \rfloor} \langle Y^k(t_j), \mathbb{X}^k_{t_j, t_{j+1}} \rangle,$$

defines a function in $C([0,T],\mathbb{R})$, and it is the unique function with $I_{\mathbb{X}}(Y)(0)=0$ for which there exists a control function c with

$$\Big|\int_{s}^{t} \langle Y(r), \mathrm{d}\mathbb{X}(r) \rangle - \sum_{k=1}^{\lfloor \rho \rfloor} \langle Y^{k}(s), \mathbb{X}_{s,t}^{k} \rangle \Big| \lesssim c(s,t)^{\frac{\lfloor \rho \rfloor + 1}{\rho}}, \qquad (s,t) \in \Delta_{T}.$$

R Cont

Pathwise integral as canonical rough integral

Proposition (C- Perkowski 2018)

Let $p \in 2\mathbb{N}$ be an even integer, $S \in V_p(\pi)$ and \mathbb{X} the canonical reduced rough path of order p associated to S, defined above. Then

$$\underbrace{\int_0^t \langle \nabla f(S(s)), \mathrm{d}\mathbb{X}(s) \rangle}_{\text{Rough integral}} = \underbrace{\int_0^t \langle \nabla_{\rho-1} f(S), \mathrm{d}S \rangle}_{\text{Pathwise integral}},$$

where the right hand side is the pathwise integral defined as a limit of compensated Riemann sums.