# Recover Dynamic Utility from Observed Characteristic Process An Application to the Economic Equilibrium

Mohamed Mrad

LAGA, Université Paris 13

Joint work with Nicole El Karoui

# Decision making in economics and finance

## Gomez, Inverse problem in Economics (2012), Decision making under uncertainty

- Most of decision making focuses on the derivation of the optimal process and its out-comes given preferencies.
- ▶ In finance the preference are based on expected utility criterium.
- Available observed data are the result of the decision process, and its dynamics over the time.

Dybvig&Rogers: Recovery of Preference from single realization of wealth,1995 Theory of revealed preference: an inverse problem ?

- question: what "observed data " tell us about preferences?
- The results address both the existence and uniqueness of a preference in a minimally restricted class.
- Poor literature is related to the dynamics of both optimal and preferences problems.

# Example: Basic static optimization problem

### Static problem with budget constraint (BC)

- ▶ A given a priori utility v of the final "wealth"
- ▶ A convex (cone) family  $\mathscr{X}$  of random (wealth ) variables  $X \ge 0$
- ▶ At least a pricing kernel Y with  $\mathbb{E}(Y) \leq 1$  (= 1 "complete market)
- ▶  $\bar{u}(x) = \max\{\mathbb{E}(v(X))|X \in \mathcal{X}\}$ , when (BC)  $\mathbb{E}(YX) \leq x$

#### The equivalent dual problem based on optimal choice of Y

- ▶ Let  $\mathscr{Y}$  be orthogonal convex cone of  $\mathscr{X}$ ;  $\mathbb{E}(YX) \leq x$ ,  $\mathbb{E}(Y) \leq 1$
- ▶ The dual problem is  $\tilde{u}(y) = \min_{Y} \{ \mathbb{E}(\tilde{v}(yY) | \mathbb{E}(YX) \leq 1 \}$  with (x = 1).
- $ightharpoonup ilde{u}(y)$  is the convex conjuguate of  $\bar{u}(x)$

#### Links between the optimal solutions

If  $\exists$  a state price s.t.  $\mathbb{E}(Y^*) = 1$ , and  $-\tilde{v}'_{v}(yY^*) \in \mathscr{X}$ ,

- lacktriangle then the optimum is  $X^*(x) = - ilde{v}_y(y(x)Y^*)$  , where
- $\triangleright$  y(x) is selected to achieve the budget constraint, if it is possible

$$\mathbb{E}[-\tilde{v}_y(y(x)Y^*)Y^*] = x$$



# A priori and A posteriori utilities

Value function 
$$\bar{u}(x) = \max\{\mathbb{E}(v(X))|X \in \mathcal{X} \text{ s.t. } \mathbb{E}(YX) \leq x\}$$

- ▶ Put  $\bar{u}(x) = \max{\{\mathbb{E}(v(x\bar{X}))|\bar{X} \in \mathcal{X}, \text{s.t.}\,\mathbb{E}(Y\bar{X}) \leq 1\}}$ ,
- $ightharpoonup \bar{u}$  is a regular utility function, the a posteriori utility value function
- ▶ At the optimum,  $v_z(X^*(x)) = y(x)Y^*$ ,
  - $X^*(x)$  is increasing, and  $\mathbb{E}(v(X^*(x))) = \bar{u}(x)$
  - $x \bar{u}_x(x) = \mathbb{E}(X^*(x)\bar{v}_z(X^*(x))) = y(x)\mathbb{E}(X^*(x)Y^*) = xy(x)$

#### The inverse problem:

To recover v from  $(\bar{u}, X^*(x))$  and  $Y^*$  for increasing  $X^*(x)$ 

- ▶ Let  $\mathcal{X}(z) = (X^*)^{-1}(z)$  be the inverse r.v. of  $x \mapsto X^*(x)$ . If  $\bar{u}_x(\mathcal{X}(z))$  is integrable near to 0,
- ▶ Thanks to the necessary condition  $v(X^*(x)) = \bar{u}(x)Y^*$ , the answer is obvious, (for eventually random utility v)

$$v_z(z) = \bar{u}_x(\mathcal{X}(z))Y^*, \quad v(x) = \int_0^x \bar{u}_x(\mathcal{X}(z))Y^*dz, \quad (v(0) = 0)$$



# Dynamic Utilities and their characteristics

# Dynamic Utility Framework on $(\Omega, \mathbb{P}, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0})$

- A dynamic utility U(t,z) is a family of càdlàg adapted regular utility functions, with Fenchel conjugate  $\widetilde{U}(t,y)$ .
- ightharpoonup A characteristic process  $(X_t^c(x))$  is an adapted stochastic flow
  - x-increasing, "optimal" in the sense
  - $U(t, X_t^c(x))$  is a martingale
- ▶ In addition, if  $X_t^c(x)$  is an "optimal" choice in a family  $\mathscr{X}$ , then  $U(t, X_t)$  is a supermartingale  $\forall X \in \mathscr{X}$ .

## Conjuguate Utility $(\widetilde{U}(t,y))$ when no optimization problem

- ▶ Put  $Y_t^c(u_x(x)) = U_z(t, X_t^c(x))$  the dual characteristic process
- ▶ By the master equation  $U(t,z) zU_z(t,z) = \widetilde{U}(t,U_z(t,z))$  and  $\widetilde{U}_y(t,U_z(t,z)) = -z$
- $\widetilde{U}(t,Y_t^c(u_x(x)))$  is a "martingale" if and only if  $X_t^c(x)Y_t^c(u_x(x))$  is a "martingale"

# Definition of the recovery problem

#### The processes, observable $X^c$ , adjoint Y, and the initial utility u(0,z)

- the observable process  $(X_c^c(x))$  is an increasing x-continuous optional flow  $(X_c^c(x))$  with  $(X_t^c(0))=0$ , with range  $(0,\infty)$  and optional inverse  $X_t^c(z)=(X_t^c)^{-1}(z)$
- $(Y_t(y))$  is an intermediate increasing y-continuous optional process with range  $(0,\infty)$ , called adjoint process
- $\triangleright$  u is a regular utility

#### Forward Utility construction

Necessarily the stochastic utility U(t,z) verifies

- $U_z(t,z) = Y_t(u_z(\mathcal{X}_t^c(z))), \quad U(t,x) = \int_0^x Y_t(u_z(\mathcal{X}_t^c(z))) dz$
- $U(t, X_t^c(x)) = \int_0^x Y_t(u_x(z)) d_z X_t^c(z)$  is a "martingale".
- ▶ These last integral is a Stieljes integral, with explosion near to z = 0.

General framework, no reference to any financial market, no regularity in time.

# Definition of the recovery problem

## **Definition** (Compatible utility).

Let  $(\mathbf{X}^c, \mathcal{X}^c) \in \mathfrak{I} \times \mathfrak{I}$  be an increasing observable process and its inverse, and u the initial utility.

A dynamic utility  $\mathbf{U}$  is said to be compatible with  $(X^c, u)$  if and only if there exists an admissible adjoint process,  $\mathbf{Y} \in \mathfrak{I}(X^c, u)$  satisfying the "first order condition":

$$U_z(t,z) = Y_t(u_x(\mathcal{X}_t^c(z)) \text{ or } U(t,X_t^c(x)) = \int_0^x Y_t(u_x(z))d_zX_t^c(z).$$

The class of compatible dynamic utilities is denoted  $\mathfrak{U}(X^c,u)$ .

Figure ( $\mathbf{X}^c, u$ ), there is a one to one correspondence between the classes of compatible utilities  $\mathfrak{U}(X^c, u)$  and admissible adjoint processes  $\mathfrak{I}(X^c, u)$ .

# Definition of the recovery problem

## **Definition** (Revealed utility).

A compatible dynamic utility U is  $\mathbf{U} \in \mathfrak{U}(X^c,u)$  is said to be a  $(X^c,u)$ -revealed dynamic utility if and only if:

$$\forall x \in (0, \infty), \quad U(t, X_t^c(x)) \text{ is a positive martingale}$$

Or equivalently, its associated adjoint process  $\mathbf{Y} \in \mathfrak{I}(X^c,u)$  satisfies the condition  $\int_0^x Y_t(u_x(z))d_zX_t^c(z)$  is a martingale". The class of revealed dynamic utilities is denoted  $\mathfrak{U}_{\mathfrak{M}}(X^c,u)$  and the class of such adjoint processes is denoted  $\mathfrak{I}_{\mathfrak{M}}(X^c,u)$ .

Req:  $\forall \mathbf{U} \in \mathfrak{U}_{\mathfrak{M}}(X^c, u)$ ,  $(\tilde{U}(t, Y_t(y)))$  is a martingale if and only if:  $\forall x \in (0, \infty)$ ,  $X_t^c(x) Y_t(u_z(x))$  is a positive martingale.

# Example: Linear (in x) characteristic process

### Constant characteristic portfolio

- Prop: A forward utility U(t,z) is a martingale if and only if the marginal utility  $U_z(t,x)$  is a martingale
  - thanks to the inequality  $z U_z(t, z) \leq U(t, z) \leq U(t, z_{max})$ .
  - By the Lebesgue derivative theorem,  $U_z(t,z) = Y_t(u_z(z))$  is a martingale dominated by the martingale U(t,z)/z.
  - Conversely, if  $U_z(t,z)$  is a martingale, that is also true for any  $z_0>0$  for  $U(t,z)-U(t,z_0)$ , and by monotony in  $z_0$  for U(t,z).

## Linear characteristic process $X_t^c(x) := xX_t^c(1) = xX_t$

- ▶ Use  $X_t$  as numeraire and define  $U^X(t,z) = U(t,zX_t)$ , which is a martingale with characteristic process x
- ▶ By the previous result, the condition is equivalent to  ${}^{\shortparallel}U_z^X(t,z) = X_t \ U_z(t,zX_t) = X_t \ Y_t(u_z(z))$  is a martingale".
- ▶ Then,  $U_z(t,z) = Y_t(u_z(z/X_t))$ , and if u is a power utility, then U is a power utility, if and only if Y is linear.

## Differentiable characteristic

## Proposition.

Let  $\mathbf{U} \in \mathfrak{U}(X^c, u)$  be a dynamic utility with adjoint process  $\mathbf{Y}$ , whose the characteristic process  $\mathbf{X}^c$  is x-differentiable with derivative  $\{X_x^c(t, x)\}$ .

- (i) If the characteristic process is convex  $(x \to X_x^c(t,x))$  positive increasing), then **U** is a revealed utility if and only if  $\{X_x^c(t,x)Y_t(u_z(x))\}$  is a martingale for any x.
- (ii) In the general case, the condition is only sufficient; if  $\{X_x^c(t,x)Y_t(u_z(x))\}$  is a martingale then  $\{U(X_t^c(x))\}$  is a martingale.

- (i) A particular case of the previous example,  $\{U^X(t,z):=U(t,X_t^c(z))\}$  is a martingale dynamic utility, which is equivalent, by previous example, to the martingale property of  $\{U_z^X(t,z)=Y_t(u_z(z))X_x^c(t,z)\}$ .
- (ii) Let  $\Psi^X(t,x_0,x):=\int_{x_0}^x Y_t(u_z(z))X_x^c(t,z)dz$ , which is a martingale with expectation  $u(x)-u(x_0)$ , by the positive (Fubini). By monotony and positivity, this property goes to the limit when  $x_0\to 0 \Rightarrow U(t,x):=\Psi^X(t,\mathcal{X}^c(t,x))$  is a revealed dynamic utility.

# Existence of revealed utility, general case

# Darboux Approximation of $\int_0^x Y_t^c(u_x(z)) d_z X_t^c(z) = U(t, X_t^c(x))$

- ▶ Let  $0 < x_1...x_n < x_{n+1}... < x$ , and  $\xi_n(t)$  a r.v.  $x_n \le \xi_n(t) \le x_{n+1}$ ,
- ▶ By Young's Theorem (1936),  $S_N^{\xi}(t,x)$  converges a.s. to U(t,x)

## Theorem 1 (Necessary and Sufficient Condition).

An utility U is a revealed utility if and only if  $\exists$  a sequence  $(x_n \leq \xi_n(t, x) \leq x_{n+1})$  s.t.  $S_N^{\xi}(t, x)$  is a martingale.

# Supermartingale conditions

In the main result, the existence of a process  $\psi_t(z,z')$  can be difficult to establish.

## Theorem 2.

Let  $\mathbf{U} \in \mathfrak{U}(X^c,u)$  be dynamic utility with adjoint process Y. Assume that for x,x'>0, the positive process  $\{Y_t(u_z(x))(X_t^c(x')-X_t^c(x))\}$  is a supermartingale, then the dynamic utility  $\mathbf{U}$  is a revealed utility.

# Consistent Dynamic Utility

#### Definition

Let  ${\mathscr X}$  be a convex cone of non negative processes called Test processes

- ▶ An  $\mathscr{X}$  consistent dynamic utility U(t,x) is a progressive utility s.t
  - ullet For any test process  $X\in \mathscr{X}$ ,  $U(t,X_t)$  is a supermartingale
  - For any initial wealth x > 0, there exists a characteristic test process  $X^c \in \mathcal{X}, X_0^c = x$ , such that  $U(t, X_c^t(x))$  is a martingale

#### Main Question

- under which conditions on  $(\mathcal{X}, u, X^c, Y)$  a revealed utility U is a  $\mathcal{X}$ -consistent utility
- Another formulation, under which conditions, the revealed utility U is the value function of an optimization problem defined on  $\mathscr{X}$ , with random final utility  $U(T_H, z)$
- Links to financial market

## A General Market Model I

#### Incomplete Market:

- Let W be a n-Brownian motion, a short rate process  $r_t$  and a risk premium vector  $\eta_t$ , and
- ${\mathscr X}$  is the class of (positif) wealth processes  $X^{\kappa}$  driven by the self-financing equation

$$dX_t^{\kappa} = X_t^{\kappa} \big[ r_t dt + \kappa_t . (dW_t + \eta_t^{\sigma} dt) \big], \ \eta_t^{\sigma}, \kappa_t \in \mathcal{R}_t^{\sigma}$$

- $\sigma_t$  is the dxn volatility matrix, and  $\sigma_t.\sigma_t^{\top}$  is invertible.
- Let  $\pi_t$  be the wealth proportions invested in the different assets, and  $\kappa_t = \sigma_t \pi_t$ ,
- Constraints:  $\mathcal{R}_t^{\sigma}$  is a family of adapted subvector spaces in  $\mathbb{R}^n$ , typically  $\mathcal{R}_t^{\sigma} = \sigma_t(\mathbb{R}^d)$ , d < n.
- $\eta_t^{\sigma} \in \mathcal{R}_t^{\sigma}$  defined as the projection of  $\eta_t$  on  $\mathcal{R}_t^{\sigma}$  is the minimal risk premium,

All processes are adapted with good integrability properties

## A General Market Model, II

#### Adjoint processes and state price processes

- A process Y is to be a strong adjoint process or a a state price process is if for any κ ∈ R<sup>σ</sup>, Y X<sup>κ</sup> is a martingale.
- ▶ Y and  $X^{\kappa}$  are strongly orthogonal, i.e.,  $Y(y)X^{\kappa}(x)$  is a martingale  $\forall x, y$ .

#### Characterization

- ▶ there exist  $\nu \in \mathcal{R}^{\sigma,\perp}$  :  $\frac{dY_t^{\nu}}{Y_t^{\nu}} = -r_t dt + (\nu_t \eta_t^{\sigma}).dW_t$ ,  $\nu_t \in \mathcal{R}_t^{\sigma,\perp}$
- $ightharpoonup \mathcal{R}^{\sigma,\perp}$  is the orthogonal cone of  $\mathcal{R}^{\sigma}$

Old Existence Result Under regularity assumptions on the stochastic flows  $X^c$  and  $Y^c$ , we have shown the existence and uniqueness of revealed consistent utility, with identification of its Itô's decomposition, in terms of stochastic PDE: Heavy computational

# Economic equilibrium: H. He & H. Leland [HL93] framework

#### Equilibrium strategy in Markovian complete market from He and Leland

- ▶ Stock diffusion:  $dS_t = S_t (\mu(t, S_t)dt + \sigma(t, S_t).dW_t)$
- complete market with given interest rate r<sub>t</sub>
- the risk premium is  $\sigma(t, S_t) \eta(t, S_t) = \mu(t, S_t) r_t$
- In complete market, the adjoint process is  $dY_t^e = -Y_t^e(\mu(t, S_t)dt + \eta_t(S_t)(dW_t \sigma(t, S_t).dt))$
- ▶ The equilibrium strategy is  $X_t^c(x) = S_t(x)$ , monotonic in x if coefficients are regular in x.

#### The forward point of view with given initial utility u

- ▶ The adjoint process is the process  $Y^e$  with initial condition  $u_z$
- ▶ The forward utility applied to  $X^c$  is  $U(t, X_t^c(x)) = Y_t^e(u_z(x))$
- ▶ In the Markovain case, (He and Leland), the previous relation implied SPDE type constraints on the coefficients of SDE Y<sup>e</sup>, similar to our paper on Itô case.

## Proposition.

The dual equilibrium revealed problem admits a solution iff:

▶ The pricing kernel is a geometrical Brownian motion, that is  $\partial_{\nu}\zeta(t,y)=0$ .

$$Y^e_t(y) := y Y^e_t = y \exp\Big(-\int_0^t r_s ds - \int_0^t \zeta_s dW_s - \frac{1}{2} \int_0^t \zeta_s^2 ds\Big)$$

▶ The "pricing" PDE

$$\partial_t \Phi(t,y) + \frac{1}{2} y^2 \zeta_t^2 \Phi_{yy}(t,y) - y r_t \Phi_y(t,y) = 0$$
 (1)

admits a positive convex decreasing solution, such that the local martingale  $\{\Phi(t,Y_t^e(y))\}$  is a "true" martingale.

Observe that the convexity and decreasing in space implies the decreasing in time of the solutions of (1).

# Aggregating power utility functions

## Proposition.

Assume that  $\forall t \int_0^t \zeta_s^2 ds < \infty$ , and  $\zeta_t^2 > 0$ . Let  $\mu(d\beta)$  be a positive Borel measure defined on  $(1,\infty)$ , such that  $\int_1^\infty \frac{y^{1-\beta}}{\beta-1} \mu(d\beta) = \phi^\mu(y) < \infty$ . The function  $y \to \phi^\mu(y)$  is the initial condition (in time) of the family of time-dependent dual utility,  $\{\Phi^{(\mu)}(t,y)\}$  positive solution of the PDE (1), where  $\Phi^{(\mu)}(t,y) = \int_1^\infty H(t,\beta) \frac{y^{1-\beta}}{\beta-1} \mu(d\beta)$  and  $\{\Phi^{(\mu)}(t,Y_t^e(y))\}$  is a positive martingale. Moreover, by Widder's results [1963], such functions are the only possible convex solutions.

# Pareto Optimality and Sup-convolution

Since all agents have the same optimal dual process, the equilibrium is Pareto optimal.

## Theorem 3.

Let U be the dynamic utility of a representative agent. A economic equilibrium holds if and only if there exists a positive Borel measure  $\mu$  such that,

▶ The utility process *U* is given as the sup-convolution:

$$U(t,x)=\sup\{\int_{1}^{\infty}U^{(\beta)}(t,x^{\beta}(x))\mu(d\beta);\ \int_{1}^{\infty}x^{\beta}(x)\mu(d\beta)=x\}$$

- ▶ The supremum is achieved at  $\{x^{\beta}(t,x) := (U_z^{(\beta)})^{-1}(t,U_z(t,x)), \beta\}.$
- U is a revealed stochastic utility with optimal portfolio  $S_t^{(\mu)}(x) = \int_1^\infty X^{*,\beta}(t,x^\beta(x))\mu(d\beta)$ . Moreover, for any  $\beta$ , the optimal wealth is  $x^\beta(t,S_t^{(\mu)}(x)) = X^{*,\beta}(t,x^\beta(x))$ .
- ▶ *U* is the value function of a forward problem, that is  $U(t, X_t(x))$  is a supermartingale for any X solution of a dynamics of the form  $dX_t(x) = X_t(x)(r_t dt + \kappa(t, X_t(x))(dW_t + \zeta_t dt)$ .

Thank You for your attention!

# Merci Nicole

