Recent progresses of LLN and CTL under Uncertainty

Peng Shige

International Conference in Honor of Professor Nicole El Karoui for Her 75th Birthday,
May 21-24 Paris
I.I.D. assumptions for sequences of real world data \(\{X_i\}_{i=1}^{\infty} \);

- Machine learning, deep learning, risk measuring pricing in finance ...
- Black-Scholes pricing formula, model uncertainty
I.I.D. assumption in statistics and econometrics

- I.I.D. assumptions for sequences of real world data \(\{X_i\}_{i=1}^{\infty} \);
- Machine learning, deep learning, risk measuring pricing in finance ...
- Black-Scholes pricing formula, model uncertainty
- Use nonlinear expectation, specially sublinear expectation,
- Covering probability uncertainty \(\{P_\theta\}_{\theta \in \Theta} \)
I.I.D. assumption in statistics and econometrics

- I.I.D. assumptions for sequences of real world data \(\{X_i\}_{i=1}^{\infty} \);
- Machine learning, deep learning, risk measuring pricing in finance ...
- Black-Scholes pricing formula, model uncertainty
- Use nonlinear expectation, specially sublinear expectation,
- Covering probability uncertainty \(\{P_\theta\}_{\theta \in \Theta} \)
- Nonlinearity of expectation \(\iff \) degree of uncertainty of probabilities
I.I.D. assumption in statistics and econometrics

- I.I.D. assumptions for sequences of real world data \(\{X_i\}_{i=1}^\infty \);
- Machine learning, deep learning, risk measuring pricing in finance ...
- Black-Scholes pricing formula, model uncertainty
- Use nonlinear expectation, specially sublinear expectation,
- Covering probability uncertainty \(\{P_\theta\}_{\theta \in \Theta} \)
- Nonlinearity of expectation \(\iff \) degree of uncertainty of probabilities
- Worst case philosophy:

\[
\hat{E}[X] := \max_{\theta \in \Theta} E_{P_\theta}[X], \quad -\hat{E}[-X] := \min_{\theta \in \Theta} E_{P_\theta}[X],
\]

\(\hat{E} \) is a sublinear expectation. Inversely...
From Probability to probability uncertainty
From linear to Nonlinear Expectations

- (Ω, \mathcal{F}, P) Probability space \iff Linear Expectation

Nonlinear expectation $E: H \mapsto \mathbb{R}$
- Monotonicity: $E[X] \geq E[Y]$ if $X \geq Y$
- Constant preserving: $E[c] = c$
- Sublinearity: $E[X + Y] \leq E[X] + E[Y]$ and $E[\lambda X] = \lambda E[X]$, $\forall \lambda \geq 0$
- $E[X_i] \downarrow 0$, if $X_i(\omega) \downarrow 0$, $\forall \omega$
From Probability to probability uncertainty
From linear to Nonlinear Expectations

- (Ω, \mathcal{F}, P) Probability space \iff Linear Expectation
- $(\Omega, \mathcal{H}, \mathbb{E})$, \mathcal{H}: a linear space of functions $X(\omega)$, called random variables, s.t.
From **Probability** to probability uncertainty
From linear to **Nonlinear Expectations**

- (Ω, \mathcal{F}, P) Probability space \iff Linear Expectation
- $(\Omega, \mathcal{H}, \mathbb{E})$, \mathcal{H}: a linear space of functions $X(\omega)$, called random variables, s.t.

\[X_1(\omega), \cdots, X_d(\omega) \in \mathcal{H} \implies \varphi(X_1(\omega), \cdots, X_d(\omega)) \in \mathcal{H}, \]

for all Lipschitz functions $\varphi(x_1, \cdots, x_d)$
(\Omega, \mathcal{F}, P) \text{ Probability space } \iff \text{ Linear Expectation}

(\Omega, \mathcal{H}, \mathbb{E}), \mathcal{H}: \text{ a linear space of functions } X(\omega), \text{ called random variables, s.t.}

X_1(\omega), \cdots, X_d(\omega) \in \mathcal{H} \implies \varphi(X_1(\omega), \cdots, X_d(\omega)) \in \mathcal{H},

\text{for all Lipschitz functions } \varphi(x_1, \cdots, x_d)

Nonlinear expectation \(\mathbb{E}: \mathcal{H} \mapsto \mathbb{R} \)

\(\mathbb{E} \) is a nonlinear functional

- **Monotonicity:** \(\mathbb{E}[X] \geq \mathbb{E}[Y] \) if \(X \geq Y \)
From **Probability** to probability uncertainty
From linear to **Nonlinear Expectations**

- (Ω, \mathcal{F}, P) Probability space \iff **Linear Expectation**
- $(\Omega, \mathcal{H}, \mathbb{E}), \mathcal{H}$: a linear space of functions $X(\omega)$, called random variables, s.t.

 $$X_1(\omega), \cdots, X_d(\omega) \in \mathcal{H} \implies \varphi(X_1(\omega), \cdots, X_d(\omega)) \in \mathcal{H},$$

 for all Lipschitz functions $\varphi(x_1, \cdots, x_d)$

- **Nonlinear expectation** $\mathbb{E} : \mathcal{H} \mapsto \mathbb{R}$

- \mathbb{E} is a nonlinear functional

 - **Monotonicity:** $\mathbb{E}[X] \geq \mathbb{E}[Y]$ if $X \geq Y$
 - **Constant preserving:** $\mathbb{E}[c] = c$;
From Probability to probability uncertainty
From linear to Nonlinear Expectations

- (Ω, \mathcal{F}, P) Probability space \iff Linear Expectation
- $(\Omega, \mathcal{H}, \mathbb{E})$, \mathcal{H}: a linear space of functions $X(\omega)$, called random variables, s.t.
 $$X_1(\omega), \cdots, X_d(\omega) \in \mathcal{H} \implies \varphi(X_1(\omega), \cdots, X_d(\omega)) \in \mathcal{H},$$
 for all Lipschitz functions $\varphi(x_1, \cdots, x_d)$
- Nonlinear expectation $\mathbb{E} : \mathcal{H} \mapsto \mathbb{R}$
- \mathbb{E} is a nonlinear functional
 - Monotonicity: $\mathbb{E}[X] \geq \mathbb{E}[Y]$ if $X \geq Y$
 - Constant preserving: $\mathbb{E}[c] = c$
 - Sublinearity: $\mathbb{E}[X + Y] \leq \mathbb{E}[X] + \mathbb{E}[Y]$ and
 $$\mathbb{E}[\lambda X] = \lambda \mathbb{E}[X], \quad \forall \lambda \geq 0$$
From Probability to probability uncertainty
From linear to Nonlinear Expectations

- (Ω, \mathcal{F}, P) Probability space \iff Linear Expectation
- $(\Omega, \mathcal{H}, \mathbb{E})$, \mathcal{H}: a linear space of functions $X(\omega)$, called random variables, s.t.
 \[X_1(\omega), \cdots, X_d(\omega) \in \mathcal{H} \implies \varphi(X_1(\omega), \cdots, X_d(\omega)) \in \mathcal{H}, \]
 for all Lipschitz functions $\varphi(x_1, \cdots, x_d)$
- Nonlinear expectation $\mathbb{E} : \mathcal{H} \mapsto \mathbb{R}$
- \mathbb{E} is a nonlinear functional
 - Monotonicity: $\mathbb{E}[X] \geq \mathbb{E}[Y]$ if $X \geq Y$
 - Constant preserving: $\mathbb{E}[c] = c$;
 - Sublinearity: $\mathbb{E}[X + Y] \leq \mathbb{E}[X] + \mathbb{E}[Y]$ and
 \[\mathbb{E}[\lambda X] = \lambda \mathbb{E}[X], \quad \forall \lambda \geq 0 \]
 - $\mathbb{E}[X_i] \downarrow 0$, if $X_i(\omega) \downarrow 0$, $\forall \omega$
Covering the risk of probability uncertainty by sublinear expectation

- Very useful parameterized sublinear models
Covering the risk of probability uncertainty by **sublinear expectation**

- Very useful parameterized sublinear models
- Sublinear is the necessary to cover the uncertainty of probabilities
Covering the risk of probability uncertainty by sublinear expectation

- Very useful parameterized sublinear models
- Sublinear is the necessary to cover the uncertainty of probabilities
Expectation nonlinearity v.s.
Probability & distribution uncertainty

\[\mathbb{E}[X] = \max_{\theta \in \Theta} E_\theta[X] = \max_{\theta \in \Theta} \int_{\Omega} X dP_\theta, \]
Expectation nonlinearity v.s.
Probability & distribution uncertainty

\[E[X] = \max_{\theta \in \Theta} E_\theta[X] = \max_{\theta \in \Theta} \int_\Omega X dP_\theta, \]

\(\{P_\theta\}_{\theta \in \Theta} \): probability model uncertainty
Expectation nonlinearity v.s. Probability & distribution uncertainty

\[\mathbb{E}[X] = \max_{\theta \in \Theta} E_\theta[X] = \max_{\theta \in \Theta} \int_{\Omega} XdP_\theta, \]

\{P_\theta\}_{\theta \in \Theta}: probability model uncertainty

\[F_\theta(x) := P_\theta(X \leq x) \]
Expectation nonlinearity v.s.
Probability & distribution uncertainty

\[\mathbb{E}[X] = \max_{\theta \in \Theta} E_{\theta}[X] = \max_{\theta \in \Theta} \int_{\Omega} X dP_{\theta}, \]

\{P_{\theta}\}_{\theta \in \Theta}: probability model uncertainty

\[F_{\theta}(x) := P_{\theta}(X \leq x) \]

\[\mathbb{F}[\varphi] = \sup_{\theta \in \Theta} F_{\theta}[\varphi] = \sup_{\theta \in \Theta} \int_{\Omega} \varphi(X) dP_{\theta} \]
Uncertainty version of I.I.D. of two random variables X and Y

Definition

- The **distribution uncertainty** of a random X equals to (resp. stronger than) that of Y, if for any test function $\varphi(x)$,

$$
E[\varphi(X)] = E[\varphi(Y)],
$$

denoted by $X \overset{d}{=} Y$ (resp. $E[\varphi(X)] \geq E[\varphi(Y)]$, denoted by $X \overset{d}{\geq} Y$).

Y is independent of X if for any test function $\varphi(x, y)$,

$$
E[\varphi(X, Y)] = E[E[\varphi(x, Y)]_{x = X}],
$$
Uncertainty version of I.I.D. of two random variables X and Y

Definition

- The **distribution uncertainty** of a random X equals to (resp. stronger than) that of Y, if for any test function $\varphi(x)$,

 $$\mathbb{E}[\varphi(X)] = \mathbb{E}[\varphi(Y)], \quad \text{denoted by} \quad X \overset{d}{=} Y$$

 (resp. $\mathbb{E}[\varphi(X)] \geq \mathbb{E}[\varphi(Y)]$, \quad \text{denoted by} \quad X \overset{d}{\geq} Y)$

- Y is **independent** of X if for any test function $\varphi(x, y)$,

 $$\mathbb{E}[\varphi(X, Y)] = \mathbb{E}[\mathbb{E}[\varphi(x, Y)]_{x=x}].$$
Uncertainty version of I.I.D. time sequence $\{X_i\}_{i=1}^{\infty}$

$$\mathbb{E}[\varphi(X_i)] = \mathbb{E}[\varphi(X_1)], \quad X_{i+1} \text{ is independent of } (X_1, \cdots, X_i), \quad \text{for all } i.$$

Remark.

$\{X_i\}_{i=1}^{\infty}$ is an IID $\implies \{\varphi(X_i)\}_{i=1}^{\infty}$ is also IID $\forall \varphi$
At time $t = 1$, we randomly choose a ball from an urn containing Black and White balls ($W_1 + B_1 = 100$)

But we know only $W_1 \in [40, 60]$

$$X_1(\omega) = 1\{W_1 = \text{true}\} - 1\{B_1 = \text{true}\}$$
Repeat this game at $t = 1, 2, 3, \cdots$,

- Each time i, W_i is changed within $W_i \in [40, 60]$
Repeat this game at \(t = 1, 2, 3, \ldots \),

- Each time \(i \), \(W_i \) is changed within \(W_i \in [40, 60] \)
- We get a sequence of random variables \(\{X_i(\omega)\}_{i=1}^{\infty} \);
Repeat this game at $t = 1, 2, 3, \cdots$

- Each time i, W_i is changed within $W_i \in [40, 60]$
- We get a sequence of random variables $\{X_i(\omega)\}_{i=1}^{\infty}$;
- This is a typical case of our daily uncertainty: environment changes all the time
- The output $\{X_i\}_{i=1}^{\infty}$ is IID:
 - X_1, X_2, \cdots are identically distributed (same distribution uncertainty)
 - X_{i+1} is independent of $\{X_i\}_{i=1}^{n}$.
- $S_n = \sum_{i=1}^{n} X_i$: a nonlinear Bernoulli random walk.
- $\{\varphi(X_i)\}_{i=1}^{\infty}$ is also IID, for any given function $\varphi(x)$.
A general random generator of nonlinear IID sequence

\[\{X_i\}_{i=1}^{\infty} \]

- The urn \(\Rightarrow \) A generator of random vectors \(X_i \), at time \(t = i \),

\[X_i(\omega) \overset{d}{=} F_\theta, \quad i = 1, 2, 3, \cdots \]

We can observe the output \(X_i \) at \(t = i \) with

\[\mathcal{L}(X_i) \in \{ F_\theta \}_{\theta \in \Theta} \]
A general random generator of nonlinear IID sequence

\(\{X_i\}_{i=1}^{\infty} \)

- The urn \(\Rightarrow \) A generator of random vectors \(X_i \), at time \(t = i \),
 \[
 X_i(\omega) \stackrel{d}{=} F_{\theta}, \quad i = 1, 2, 3, \cdots
 \]

 We can observe the output \(X_i \) at \(t = i \) with
 \[
 \mathcal{L}(X_i) \in \{ F_{\theta} \}_{\theta \in \Theta}
 \]

- \(X_{i+1} \stackrel{d}{=} X_i \), \(X_{i+1} \) is independent of \((X_1, X_2, \cdots, X_i) \)
An important special case: I.I.D. maximal distributed sequence $\{X_i\}_{i=1}^\infty$

- $\{F_\theta\}_{\theta \in \Theta} = M_{[\mu, \bar{\mu}]}$: all prob. distributions concentrated on $[\mu, \bar{\mu}]$.

- Many cases, we have

$$\mathcal{L}(X_i) \in \{F_\theta\}_{\theta \in \Theta_i}, \quad \Theta_i \subset \Theta$$

But we use $X_i \stackrel{d}{=} \{F_\theta\}_{\theta \in \Theta}$ to robustly cover the uncertainty.
Important advantage of nonlinear expectation space

- **Example**: Maximally-distributed i.i.d sequence \(\{X_i\}_{i=1}^{\infty} \): covers all possible distributions of the sequence satisfying

\[
\underline{\mu} \leq X_i(\omega) \leq \bar{\mu}, \quad i = 1, 2, \ldots \quad \mathbb{E}[\varphi(X_i)] = \max_{\nu \in [\underline{\mu}, \bar{\mu}]} \varphi(\nu)
\]
Important advantage of nonlinear expectation space

- **Example:** Maximally-distributed i.i.d sequence $\{X_i\}_{i=1}^{\infty}$: covers all possible distributions of the sequence satisfying

$$\underline{\mu} \leq X_i(\omega) \leq \overline{\mu}, \quad i = 1, 2, \cdots \quad \mathbb{E}[\varphi(X_i)] = \max_{\nu \in [\underline{\mu}, \overline{\mu}]} \varphi(\nu)$$

$$X_i \overset{d}{=} M_{[\underline{\mu}, \overline{\mu}]}.$$
Important advantage of nonlinear expectation space

- **Example:** Maximally-distributed i.i.d sequence \(\{X_i\}_{i=1}^{\infty} \): covers all possible distributions of the sequence satisfying

 \[
 \underline{\mu} \leq X_i(\omega) \leq \overline{\mu}, \quad i = 1, 2, \ldots \quad \mathbb{E}[\phi(X_i)] = \max_{\nu \in [\underline{\mu}, \overline{\mu}]} \phi(\nu)
 \]

 \[
 X_i \overset{d}{=} M_{[\underline{\mu}, \overline{\mu}]}.
 \]

- Connected to Error Calculation: method widely used in the human history, longtime before the birth of Probability Theory.
Important advantage of nonlinear expectation space

- **Example**: Maximally-distributed i.i.d sequence \(\{X_i\}_{i=1}^{\infty} \): covers all possible distributions of the sequence satisfying
 \[
 \underline{\mu} \leq X_i(\omega) \leq \bar{\mu}, \quad i = 1, 2, \cdots \quad \mathbb{E}[\varphi(X_i)] = \max_{\nu \in [\underline{\mu}, \bar{\mu}]} \varphi(\nu)
 \]
 \[
 X_i \overset{d}{=} M_{[\underline{\mu}, \bar{\mu}]}.
 \]

- Connected to Error Calculation: method widely used in the human history, longtime before the birth of Probability Theory.
- Thus, principally, all random sequences can be treated as an nonlinear IID random sequence.
- How to narrow down \(\bar{\mu} - \underline{\mu} \) through real data is our important task.
Important advantage of nonlinear expectation space

- **Example**: Maximally-distributed i.i.d sequence \(\{X_i\}_{i=1}^{\infty} \): covers all possible distributions of the sequence satisfying

\[
\underline{\mu} \leq X_i(\omega) \leq \bar{\mu}, \quad i = 1, 2, \cdots \quad \mathbb{E}[\varphi(X_i)] = \max_{\nu \in [\underline{\mu}, \bar{\mu}]} \varphi(\nu)
\]

\[
X_i \overset{d}{=} M_{[\underline{\mu}, \bar{\mu}]}.
\]

- Connected to Error Calculation: method widely used in the human history, longtime before the birth of Probability Theory.
- Thus, principally, all random sequences can be treated as an nonlinear IID random sequence.
- How to narrow down \(\bar{\mu} - \underline{\mu} \) through real data is our important task.
- Challenging objective: to establish a systematic framework \((\Omega, \mathcal{H}, \mathbb{E}) \) compatible with \((\Omega, \mathcal{F}, P) \).
- Important: hidden behind are PDEs (linear/nonlinear heat equation)!

International Conference in Honor of Professor Nicole El Karoui for Her 75th Birthday, May 21-24 Paris
Two fundamentally important nonlinear distributions

- $Y \overset{d}{=} M_{[\mu, \mu]}$ is defined by $aY + b\bar{Y} \overset{d}{=} (a + b)Y$;
- $X \overset{d}{=} N(0, [\sigma^2, \bar{\sigma}^2])$ is defined by $aX + b\bar{X} \overset{d}{=} \sqrt{a^2 + b^2}X$;
The universality of the IID assumption under sublinear expectation

- For a bounded random sequence \(\{X_i\}_{i=1}^{\infty} \) one can always enlarge the probability uncertainty so that \(\{X_i\}_{i=1}^{\infty} \) is an I.I.D. sequence under the enforced sublinear expectation \(\mathbb{E} \).

Lemma

Assume that a random sequence \(\{X_i\}_{i=1}^{\infty} \) is bounded by \(\underline{\mu} \leq X_i \leq \bar{\mu} \). Then we have \(X_i \overset{d}{\leq} \bar{X}_i \) and \(\{X_i\}_{i=1}^{\infty} \overset{d}{\leq} \{\bar{X}_i\}_{i=1}^{\infty} \), where \(\{\bar{X}_i\}_{i=1}^{\infty} \) is an IID sequence with \(\bar{X}_i \overset{d}{=} M_{[\underline{\mu}, \bar{\mu}]} \).
The universality of the IID assumption under sublinear expectation

- For a bounded random sequence \(\{X_i\}_{i=1}^{\infty} \) one can always enlarge the probability uncertainty so that \(\{X_i\}_{i=1}^{\infty} \) is an I.I.D. sequence under the enforced sublinear expectation \(\mathbb{E} \).

Lemma

Assume that a random sequence \(\{X_i\}_{i=1}^{\infty} \) is bounded by \(\underline{\mu} \leq X_i \leq \overline{\mu} \). Then we have \(X_i \sim \overline{X}_i \) and \(\{X_i\}_{i=1}^{\infty} \sim \{\overline{X}_i\}_{i=1}^{\infty} \), where \(\{\overline{X}_i\}_{i=1}^{\infty} \) is an IID sequence with \(\overline{X}_i \sim M[\underline{\mu}, \overline{\mu}] \).

Thus one can robustly enforce \(\mathbb{E}[\cdot] \) and assume that \(\{X_i\}_{i=1}^{\infty} \) is IID under \(\mathbb{E}[\cdot] \).
The universality of the IID assumption under sublinear expectation

- If a random sequence \(\{ X_i \}_{i=1}^{\infty} \) is not bounded, we can set

\[
Y_i^{(j)} = \frac{2}{\pi} \arctan(X_i^{(j)}), \quad j = 1, 2, \ldots, d.
\]

Then \(\{ Y_i \}_{i=1}^{\infty} \) can be robustly assumed to be IID.

- On the other hand, the ‘IID’ assumption is very flexible and can cover many important cases.

- **Example** If \(\{ X_i \}_{i=1}^{\infty} \) is i.i.d. and the distribution of \(X_1 \) is linear, then it becomes to IID sequence in the classical case.
Theorem (Peng2007)

Let \(\{Y_i\}_{i=1}^{\infty} \) be IID sequence. Assume
\[
\lim_{c \to \infty} \mathbb{E}[|Y_1 - c|] = 0.
\]

Then, for each \(\phi \in C^b(\mathbb{R}) \),
\[
\lim_{n \to \infty} \mathbb{E}[\phi(Y_1 + \cdots + Y_n)] = \mathbb{E}[\phi(Y_1) = \max_{v \in [\mu, \mu]} \phi(v)].
\]

where \(\mu = \mathbb{E}[Y_1] \), \(\mu = -\mathbb{E}[-Y_1] \).

\(Y_d = \) Maximal distribution.

\(u(x, t) = \) solves the 1st order PDE.
Theorem (Peng2007)

Let \(\{Y_i\}_{i=1}^{\infty} \) be IID sequence. Assume \(\lim_{c \to \infty} E[(|Y_1| - c)^+] = 0. \)

Then, for each \(\varphi \in C_b(\mathbb{R}) \),

\[
\lim_{n \to \infty} E\left[\varphi\left(\frac{Y_1 + \cdots + Y_n}{n} \right) \right] = E\left[\varphi(Y) \right] = \max_{\nu \in [\mu, \bar{\mu}]} \varphi(\nu).
\]

where \(\bar{\mu} = E[Y_1] \), \(\mu = -E[-Y_1] \).
Theorem (Peng2007)

Let \(\{Y_i\}_{i=1}^\infty \) be IID sequence. Assume \(\lim_{c \to \infty} \mathbb{E}[(|Y_1| - c)^+] = 0 \).

Then, for each \(\varphi \in C_b(\mathbb{R}) \),

\[
\lim_{n \to \infty} \mathbb{E}[\varphi(\frac{Y_1 + \cdots + Y_n}{n})] = \mathbb{E}[\varphi(Y)] = \max_{\nu \in [\mu, \bar{\mu}]} \varphi(\nu).
\]

where \(\bar{\mu} = \mathbb{E}[Y_1], \mu = -\mathbb{E}[-Y_1] \).

\[Y \overset{d}{=} M_{[\bar{\mu}, \mu]} : \text{Maximal distribution.} \]
Theorem (Peng2007)

Let \(\{Y_i\}_{i=1}^{\infty} \) be IID sequence. Assume \(\lim_{c \to \infty} \mathbb{E}[(|Y_1| - c)^+] = 0 \).
Then, for each \(\varphi \in C_b(\mathbb{R}) \),

\[
\lim_{n \to \infty} \mathbb{E}[\varphi\left(\frac{Y_1 + \cdots + Y_n}{n}\right)] = \mathbb{E}[\varphi(Y)] = \max_{v \in [\underline{\mu}, \bar{\mu}]} \varphi(v).
\]

where \(\bar{\mu} = \mathbb{E}[Y_1], \underline{\mu} = -\mathbb{E}[-Y_1] \).

\[Y \overset{d}{=} M_{[\bar{\mu}, \underline{\mu}]} : \text{Maximal distribution.} \]

\[u(x, t) := \mathbb{E}[\varphi(x + (1 - t)Y)] \] solves the 1st order PDE
Nonlinear Central limit theorem

Theorem (Peng2008-2010)

Let \(\{X_i\}_{i=1}^{\infty} \) be IID sequence. Assume furthermore

\[
\mathbb{E}[|X_1|^{2+\epsilon}] < \infty \quad \mathbb{E}[X_1] = \mathbb{E}[-X_1] = 0
\]

Then, for each \(\varphi \in C_b(\mathbb{R}) \),

\[
\lim_{n \to \infty} \mathbb{E}[\varphi(\frac{X_1 + \cdots + X_n}{\sqrt{n}})] = u^{\varphi}(0,0) = \mathcal{N}_{G}(\varphi).
\]

\[
\partial_t u^{\varphi} + G(\partial_{xx}^{2} u^{\varphi}) = 0, \quad t \in [0,1], \quad u^{\varphi}(1,x) = \varphi(x),
\]

\[
G(a) := \frac{1}{2}[\bar{\sigma}^2 a^+ - \bar{\sigma}^2 a^-]
\]

\[
\bar{\sigma}^2 := \mathbb{E}[X_1^2], \quad \sigma^2 := -\mathbb{E}[-X_1^2] > 0,
\]
Nonlinear Central limit theorem

Theorem (Peng2008-2010)

Let \(\{X_i\}_{i=1}^{\infty} \) be IID sequence. Assume furthermore

\[
\mathbb{E}[|X_1|^{2+\epsilon}] < \infty \quad \mathbb{E}[X_1] = \mathbb{E}[-X_1] = 0
\]

Then, for each \(\varphi \in C_b(\mathbb{R}) \),

\[
\lim_{n \to \infty} \mathbb{E}[\varphi(\frac{X_1 + \cdots + X_n}{\sqrt{n}})] = u\varphi(0, 0) = \mathcal{N}_G(\varphi).
\]

\[
\partial_t u\varphi + G(\partial_{xx}^2 u\varphi) = 0, \quad t \in [0, 1], \quad u\varphi(1, x) = \varphi(x),
\]

\[
G(a) := \frac{1}{2}[\bar{\sigma}^2 a^+ - \bar{\sigma}^2 a^-]
\]

\[
\bar{\sigma}^2 := \mathbb{E}[X_1^2], \quad \sigma^2 := -\mathbb{E}[-X_1^2] > 0,
\]
Sketch of the proof: \(u \in C^{1+\frac{\alpha}{2}, 2+\alpha} [Krylov] \)

\[
\lim_{n \to \infty} \mathbb{E}[\varphi(S^n)] = u^\varphi(0, 0),
\]

\[
S^n_k := \frac{1}{\sqrt{n}}(X_1 + \cdots + X_k), \quad k = 1, \ldots, n.
\]

\[
u(S^n, 1) - u(0, 0) = \sum_{k=0}^{n-1} \left[u(S^n_{k+1}, \frac{k+1}{n}) - u(S^n_k, \frac{k}{n}) \right]
\]
Sketch of the proof: \(u \in C^{1+\frac{\alpha}{2},2+\alpha} \) [Krylov]

\[
\lim_{n \to \infty} \mathbb{E}[\varphi(S_n^k)] = u^\varphi(0,0),
\]

\[
S_n^k := \frac{1}{\sqrt{n}}(X_1 + \cdots + X_k), \quad k = 1, \ldots, n.
\]

\[
u(S_n^k, 1) - u(0,0) = \sum_{k=0}^{n-1} [u(S_{k+1}^n, \frac{k+1}{n}) - u(S_k^n, \frac{k}{n})]
\]

\[
\mathbb{E}[u(S_{k+1}^n, \frac{k+1}{n}) - u(S_k^n, \frac{k}{n})] = \mathbb{E}[u(S_k^n + \frac{1}{\sqrt{n}}X_{k+1}, \frac{k}{n} + \frac{1}{n}) - u(S_k^n, \frac{k}{n})]
\]

\[
= \mathbb{E}\left[\frac{1}{n}\partial_t u(x, t) + \frac{X_{k+1}}{\sqrt{n}}\partial_x u(x, t) + \frac{X_{k+1}^2}{2n} \partial_{xx} u(x, t)\right] + o\left(\frac{1}{n}\right)
\]

\[
= 0 + o\left(\frac{1}{n}\right), \quad (x, t) = (S_k^n, \frac{k}{n})
\]
Convergence rate of LLN

Theorem (Fang-Peng-Shao-Song(2017))

We have

\[
\mathbb{E}[d^2_{\mu, \bar{\mu}}(X_n)] = \mathbb{E}[((\bar{X}_n - \bar{\mu})^+)^2 + ((\bar{X}_n - \bar{\mu})^-)^2] \leq \frac{2[\bar{\sigma}^2 + (\bar{\mu} - \mu)^2]}{n},
\]

(1)

where

\[\bar{\mu} = \mathbb{E}[X_1], \quad \mu = -\mathbb{E}[-X_1].\]

and

\[\bar{\sigma}^2 := \sup_{\theta \in \Theta} E_{P_\theta}[(X_1 - E_{P_\theta}[X_1])^2].\]
Remark. ([Fang-P.-Shao, Song 2017])

If $\mu > \mu$ then the convergence of $\frac{1}{n}(X_1 + \cdots + X_n)$ to cannot be a strong one!

Stein equation: the key tool of Stein method. Song (2017) had found the corresponding "Stein equation", and provided Nonlinear Stein method.

the rate of convergence is:

\[
\sup_{|\phi|_{\text{Lip}} \leq 1} \left| \hat{E}\left[\phi\left(\frac{X_1 + \cdots + X_n}{\sqrt{n}}\right)\right] - \mathcal{N}_G(\phi) \right| \lesssim \frac{1}{n^\alpha},
\]

where \(\alpha \in (0, 1)\) depends only on \(-\hat{E}[-X_1^2]\) and \(\hat{E}[X_1^2]\).
Converges rate of nonlinear CLT

Theorem (Krylov 2018)

Assume that $|\phi(x) - \phi(y)| \leq |x - y|^\beta$, \(M_\beta := \sup_{\xi \in \Theta} E(|\xi|^{2+\beta}) < \infty \).

Then

$$\left| E[\phi\left(\frac{1}{n}(Y_1 + \cdots + Y_n)\right)] - E[\phi(Y)] \right| \leq Nn^{-\beta^2/(4+2\beta)}$$

where \(N \) depends only on \(M_\beta \) and \(\sigma^2 \).

- [Song] (2017) Normal approximation by Stein’s method under sublinear expectations”,
Related works

Nonlinear normal distributions

Definition

A random variable X in $(\Omega, \mathcal{H}, \mathbb{E})$ is normal if the function

$$u(t, x) := \mathbb{E}[\varphi(x + \sqrt{1 - tX})]$$

is the solution of the nonlinear PDE

$$\partial_t u + G(\partial_{xx} u) = 0, \quad u(1, x) = \varphi(x).$$
Nonlinear normal distributions

Definition

A random variable X in $(\Omega, \mathcal{H}, \mathbb{E})$ is normal if the function

$$u(t, x) := \mathbb{E}[\varphi(x + \sqrt{1 - tX})]$$

is the solution of the nonlinear PDE

$$\partial_t u + G(\partial_{xx} u) = 0, \quad u(1, x) = \varphi(x).$$

where

- $G(a) = \frac{1}{2} [\bar{\sigma}^2 a^+ - \sigma^2 a^-]$
 $\bar{\sigma}^2 = \mathbb{E}[X^2], \quad \sigma^2 = -\mathbb{E}[-X^2]$
Classical ‘Monté-Carlo’ approach for estimating $\hat{E}[\varphi(X)]$ through data

- **Key point:** How to obtain $\hat{E}[\varphi(X)]$ through its sample $\{x_i\}_{i=1}^N$?
- In many practice cases: we care about $\hat{E}[\varphi(X)]$ with a specific function $\varphi(x)$:
 a consumption utility function, a contract, a cost function
- In a classical probability space (Ω, \mathcal{F}, P), we can apply LLN to calculate

 $$E[\varphi(X)] \sim \mathbb{M}[\varphi(X)] := \frac{1}{N} \sum_{i=1}^{N} \varphi(x_i)$$

where $\{x_i\}_{i=1}^N$ is an IID sample of X.
Classical ‘Monté-Carlo’ approach for estimating $\hat{E}[\varphi(X)]$ through data

- Key point: How to obtain $\hat{E}[\varphi(X)]$ through its sample $\{x_i\}_{i=1}^N$?
- In many practice cases: we care about $\hat{E}[\varphi(X)]$ with a specific function $\varphi(x)$: a consumption utility function, a contract, a cost function
- In a classical probability space (Ω, \mathcal{F}, P), we can apply LLN to calculate

$$E[\varphi(X)] \sim \mathbb{M}[\varphi(X)] := \frac{1}{N} \sum_{i=1}^{N} \varphi(x_i)$$

where $\{x_i\}_{i=1}^N$ is an IID sample of X.
- But: Is $\{x_i\}_{i=1}^N$ a classical IID?
φ-max-mean algorithm: the data-based distribution of X

- Let $(\Omega, \mathcal{H}, \hat{E})$ be a sublinear expectation space and
 \[
 \{x_i\}_{i=1}^{n \times m} : \text{ IID sample of a random vector } X
 \]

- The max-mean algorithm to estimate $\hat{E}[\varphi(X)]$:
 \[
 \hat{M}[\varphi] = \max\{ Y^k_n : k = 0, \cdots, m - 1 \},
 \]
 where
 \[
 Y^k_n = \frac{1}{n} \sum_{i=1}^{n} \varphi(x_{nk+i}).
 \]

- By the above LLN, as $n \to \infty$, \(\{ Y^k_n \}_{k=0}^{m-1} \xrightarrow{d} \) an IID \(\{ Y^k \}_{k=0}^{m-1} \),
 \[
 Y^k \xrightarrow{d} M_{[\mu, \overline{\mu}]}, \quad \text{with} \quad \overline{\mu} = \hat{E}[\varphi(X)], \quad \mu = -\hat{E}[-\varphi(X)]
 \]

- But $\max\{ Y^k_n : k = 0, \cdots, m - 1 \}$ provides us the asymptotically optimal unbiased estimate.
\(\text{\textbf{\(\varphi \)-max-mean algorithm of \(X \) from IID sample \(\{x_i\}_{i=1}^{mn} \)}} \)

\[
\max \left\{ \left. \frac{\varphi(X_1) + \cdots + \varphi(X_n)}{n} \right| \gamma_0^n \right\}, \ldots, \left. \frac{\varphi(X_{(m-1)n+1}) + \cdots + \varphi(X_{mn})}{n} \right| \gamma_m^n \right\}
\]

\[
\mathbb{E}[\varphi(X)] \simeq \text{Max-Mean-} [\varphi(\{x_i\})] \\
= \max_{0 \leq k \leq m-1} \frac{\sum_{i=1}^{n} \varphi(x_{kn+i})}{n}
\]
Optimality of the estimate

The optimality of the above estimate is based on the following quite simple, but very fundamental result:

Theorem (Jin-Peng2016)

Let Y^1, \ldots, Y^m be IID and maximally distributed:

$$Y^i \overset{d}{=} M_{[\mu, \bar{\mu}]}, \quad i = 1, \ldots, m,$$

where $\mu \leq \bar{\mu}$ is two unknown parameters. Then
The optimality of the above estimate is based on the following quite simple, but very fundamental result:

Theorem (Jin-Peng 2016)

Let Y^1, \cdots, Y^m be IID and maximally distributed:

$$Y^i \overset{d}{=} M_{[\mu, \mu]}, \quad i = 1, \cdots, m,$$

where $\mu \leq \overline{\mu}$ is two unknown parameters. Then

$$\mu \leq \min \{ Y^1(\omega), \cdots, Y^n(\omega) \} \leq \max \{ Y^1(\omega), \cdots, Y^n(\omega) \} \leq \overline{\mu}.$$

Moreover

$$\widehat{\mu}_n = \max \{ Y^1, \cdots, Y^n \},$$

is the maximum unbiased estimate of $\overline{\mu}$.
• Many typical nonlinear distributions

\[M_{[\mu, \overline{\mu}]}, \quad N(\mu, [\sigma^2, \overline{\sigma}^2]), \quad P_{[\lambda, \overline{\lambda}]} \text{ (Nonlinear Poisson)} \]

• asymptotically unbiased estimates:

\[\hat{\sigma}^2 := \min_{1 \leq k \leq m} \sigma_k^2, \quad \overline{\sigma}^2 := \max_{1 \leq k \leq m} \sigma_k^2 \]

where \[\sigma_k^2 := \frac{1}{n} \sum_{j=1}^{n} (x_{n(k-1)+j} - \mu)^2. \]
Maximal and Normal distributions and Nonlinear PDEs

- $Y \overset{d}{=} M_{[\mu, \mu]}$ defined by $aY + b\bar{Y} \overset{d}{=} (a + b)Y$; is directly related to the 1st order PDE

$$\partial_t u^\varphi + g(\partial_x u^\varphi) = 0,$$

$$u^\varphi(x, 1) = \varphi(x).$$

for $u^\varphi(t, x)$ on $t \in [0, 1]$, $x \in \mathbb{R}^d$.

- Through

$$F_g[\varphi] := u^\varphi(0, 0) = \mathbb{E}[\varphi(Y)].$$
Maximal and Normal distributions and Nonlinear PDEs

- $X \overset{d}{=} N(0, [\sigma^2, \bar{\sigma}^2])$ defined by $aX + b\bar{X} \overset{d}{=} \sqrt{a^2 + b^2}X$ is calculated by the 2nd order parabolic PDEs

\[
\partial_t \nu^\varphi + G(\partial_{xx}^2 \nu^\varphi) = 0,
\]
\[
\nu^\varphi(x, 1) = \varphi(x).
\]

Through:

\[
\mathcal{F}_G[\varphi] := \nu^\varphi(0, 0) = \mathbb{E}[\varphi(X)]
\]
\[
\begin{cases}
\partial_t u(t, x) + g(\partial_x u) = 0 \\
u(T, x) = \varphi(x)
\end{cases}
\]
\[\begin{aligned}
\partial_t u(t, x) + g(\partial_x u) &= 0 \\
u(T, x) &= \varphi(x)
\end{aligned}\]
\[
\begin{aligned}
\begin{cases}
\partial_t u(t, x) + g(\partial_x u) = 0 \\
u(T, x) = \varphi(x)
\end{cases}
\end{aligned}
\]
\[
\begin{cases}
\partial_t u(t,x) + g(\partial_x u) = 0 \\
u(T,x) = \varphi(x)
\end{cases}
\]

\[
\begin{cases}
\partial_t u(t,x) + G(\partial_{xx} u) = 0 \\
u(T,x) = \varphi(x)
\end{cases}
\]

\[g(a) : \bar{\mu}a\]

\[G(a) : \frac{\sigma^2}{2} \frac{a^2}{2}\]
Papers on statistics and data-analysis under uncertainty

Works on limit theory with nonlinear expectations

Nonlinear Brownian Motion: (Continuous time i.i.d)

Definition.

\(B \) is called a \(G \)-Brownian motion if:

\[
\text{For each } t_1 \leq \cdots \leq t_n, \quad B_{t_n} - B_{t_{n-1}} \text{ is indep. of } (B_{t_1}, \cdots, B_{t_{n-1}}).
\]

\[
B_{t+d} = B_s + (t-s), \quad \text{for all } s, t \geq 0.
\]

\[
\E[|B_t|^3] = o(t).
\]

Theorem.

If \((B_t)_{t \geq 0}\) is a \(G \)-Brownian motion and \(\E[B_t] = \E[-B_t] \equiv 0 \) then:

\[
B_{t+s} - B_s \overset{d}{=} \mathcal{N}(0, \sigma^2 t), \quad \forall s, t \geq 0.
\]
Definition.

B is called a G-Brownian motion if:
- For each $t_1 \leq \cdots \leq t_n$, $B_{t_n} - B_{t_{n-1}}$ is indep. of $(B_{t_1}, \cdots, B_{t_{n-1}})$.
Nonlinear Brownian Motion: (Continuous time i.i.d)

Definition.

B is called a G-Brownian motion if:

- For each $t_1 \leq \cdots \leq t_n$, $B_{t_n} - B_{t_{n-1}}$ is indep. of $(B_{t_1}, \cdots, B_{t_{n-1}})$.
- $B_t \overset{d}{=} B_{s+t} - B_s$, for all $s, t \geq 0$
Definition.

B is called a G-Brownian motion if:

- For each $t_1 \leq \cdots \leq t_n$, $B_{t_n} - B_{t_{n-1}}$ is independent of $(B_{t_1}, \cdots, B_{t_{n-1}})$.
- $B_{t} \overset{d}{=} B_{s+t} - B_{s}$, for all $s, t \geq 0$
- $\mathbb{E}[|B_t|^3] = o(t)$.

Definition.

B is called a G-Brownian motion if:

- For each $t_1 \leq \cdots \leq t_n$, $B_{t_n} - B_{t_{n-1}}$ is indep. of $(B_{t_1}, \cdots, B_{t_{n-1}})$.
- $B_t \overset{d}{=} B_{s+t} - B_s$, for all $s, t \geq 0$
- $\mathbb{E}[|B_t|^3] = o(t)$.

Theorem.

If $(B_t)_{t \geq 0}$ is a G–Brownian motion and $\mathbb{E}[B_t] = \mathbb{E}[-B_t] \equiv 0$ then:

$B_{t+s} - B_s \overset{d}{=} N(0, [\sigma^2 t, \bar{\sigma}^2 t]), \ \forall \ s, t \geq 0$
Real case study: from VaR to GVaR
Problem challenged by CFFEX
(China Financial Future Exchange)

\[\text{VaR}(X) = -\inf \{ x \mid P(X \leq x) > \alpha \} = -\inf \{ x \mid F(x) > \alpha \} \]

Can we use \(G \)-normal distribution in the place of a linear distribution \(F \)?

Nonlinear normally distributed VaR — G-VaR:
\[X_{t+1} = N_G. \{X_t\} \text{ of daily return data of CSI300, April 13, 2010–April 16, 2015; } \{X_t\} \text{: S&P 500 daily returns from 04/03/2010 to 09/12/2014,} \]
Real case study: from VaR to GVaR

Problem challenged by CFFEX
(China Financial Future Exchange)

\[\text{VaR}^F_\alpha(X) = - \inf \{ x \mid P(X \leq x) > \alpha \} \]
\[= - \inf \{ x \mid F(x) > \alpha \}, \]
Real case study: from VaR to GVaR
Problem challenged by CFFEX
(China Financial Future Exchange)

\[
\text{VaR}^F_\alpha(X) = - \inf \{ x \mid P(X \leq x) > \alpha \} \\
= - \inf \{ x \mid F(x) > \alpha \},
\]

Can we use G-normal distribution in the place of a linear distribution \(F \)?

- Nonlinear normally distributed VaR —G-VaR:

\[
X_{t+1} \overset{d}{=} \mathcal{N}_G.
\]
Real case study: from VaR to GVaR
Problem challenged by CFFEX
(China Financial Future Exchange)

$$\text{VaR}^F_{\alpha}(X) = - \inf \{ x \mid P(X \leq x) > \alpha \}$$
$$= - \inf \{ x \mid F(x) > \alpha \},$$

Can we use G-normal distribution in the place of a linear distribution F?

- Nonlinear normally distributed VaR —G-VaR:

$$X_{t+1} \overset{d}{=} \mathcal{N}_G.$$

- $\{X_t\}$: of daily return data of CSI300, April 13, 2010- April 16, 2015;
Real case study: from VaR to GVaR
Problem challenged by CFFEX
(China Financial Future Exchange)

\[
\text{VaR}_\alpha^F (X) = - \inf \{ x \mid P(X \leq x) > \alpha \} \\
= - \inf \{ x \mid F(x) > \alpha \},
\]

Can we use \(G \)-normal distribution in the place of a linear distribution \(F \)?

- Nonlinear normally distributed VaR — G-VaR:

\[
X_{t+1} \overset{d}{=} \mathcal{N}_G.
\]

- \(\{X_t\} \): of daily return data of CSI300, April 13, 2010- April 16, 2015;
- \(\{X_t\} \): S&P 500 daily returns from 04/03/2010 to 09/12/2014,
Empirical test of robust VaR

\[\alpha(X) = -\inf_{x \in \mathbb{R}} \{ F_G(x) > \alpha \} \]

We have

\[F_G(x) = u(t, x) \mid t = 0, \]

where \(u \) is the solution of the PDE

\[\partial_t u + G(\partial_{xx} u) = 0, \]

(2)

with the Cauchy condition

\[u(1, x) = 1 \left[0, \infty \right)(x). \]

(3)

\[F_G(x) \] has the explicit expression:

\[F_G(x) = \hat{x} - \int_{-\infty}^{\infty} \sqrt{\frac{2}{\pi}} \left(\sigma + \sigma \right)^2 \left[\exp \left(\frac{-y^2}{2\sigma^2} \right) \right]_{y \leq 0} + \exp \left(\frac{-y^2}{2\sigma^2} \right)_{y > 0} \, dy. \]

(4)
Empirical test of robust VaR

\[\text{GVaR}_\alpha(X) := - \inf \{ x \in \mathbb{R} : F_G(x) > \alpha \} . \]

We have

\[F_G(x) = u(t, x) \big|_{t=0}, \]

\[F^*_G(x) \] has the explicit expression:

\[F^*_G(x) = \frac{x - \infty}{\sqrt{2\sqrt{\pi}}} (\sigma + \sigma) \] with

\[\int_{-\infty}^{0} \exp \left(-\frac{y^2}{2\sigma^2} \right) dy + \int_{0}^{\infty} \exp \left(-\frac{y^2}{2\sigma^2} \right) dy. \]
Empirical test of robust VaR

\[\text{GVaR}_\alpha(X) := - \inf \{ x \in \mathbb{R} : F_G(x) > \alpha \} \].

We have

\[F_G(x) = u(t, x)|_{t=0}, \]

\(u \) is the solution of the PDE

\[\partial_t u + G(\partial_{xx}^2 u) = 0, \quad (2) \]

with the Cauchy

\[u(1, x) = 1_{[0, \infty)}(x). \quad (3) \]
Empirical test of robust VaR

$$\text{GVaR}_\alpha(X) := - \inf \{ x \in \mathbb{R} : F_G(x) > \alpha \}.$$

We have

$$F_G(x) = u(t, x)|_{t=0},$$

u is the solution of the PDE

$$\partial_t u + G(\partial_{xx} u) = 0,$$ \hspace{1cm} (2)

with the Cauchy

$$u(1, x) = 1_{[0,\infty)}(x).$$ \hspace{1cm} (3)

F_G has the explicit expression:

$$F_G(x) = \int_{-\infty}^{x} \frac{\sqrt{2}}{\sqrt{\pi(\sigma^2 + \sigma^2)}} \left[\exp\left(\frac{-y^2}{2\sigma^2}\right) 1_{y \leq 0} + \exp\left(\frac{-y^2}{2\sigma^2}\right) 1_{y > 0} \right] dy.$$ \hspace{1cm} (4)
X_{t+1} is assumed to be G-normally distributed:

$$X_{t+1} \stackrel{d}{=} N(0, [\sigma^2_t, \sigma^2_t]).$$
• X_{t+1} is assumed to be G-normally distributed:

$$X_{t+1} \overset{d}{=} N(0, [\sigma^2_t, \bar{\sigma}^2_t]).$$

• For each \bar{t}, use the passed 1 year data $\{X_{\bar{t}-s}\}_{0 \leq s \leq l-1}$ to estimate two parameters $\sigma^2_{\bar{t}}$ and $\bar{\sigma}^2_{\bar{t}}$ at the day \bar{t}:
\(X_{t+1} \) is assumed to be \(G \)-normally distributed:

\[
X_{t+1} \overset{d}{=} N(0, [\sigma^2_t, \sigma^2_t]).
\]

For each \(\bar{t} \), use the passed 1 year data \(\{X_{\bar{t}-s}\}_{0 \leq s \leq l-1} \) to estimate two parameters \(\sigma^2_{\bar{t}} \) and \(\bar{\sigma}^2_{\bar{t}} \) at the day \(\bar{t} \):

- Fix a window width \(w = 100 \) use the moving window

\[
\sigma^2_{\bar{t},w} := \sigma^2(X_{\bar{t}-w+1}, \cdots, X_{\bar{t}}).
\]
Then get the upper and low data variances:

\[\bar{\sigma}^2_t = \max\{\sigma^2_{t,20}, \sigma^2_{t-s,w}; \ s \in [0, \cdots, l - w]\}, \]
\[\underline{\sigma}^2_t = \min\{\sigma^2_{t,20}, \sigma^2_{t-s,w}; \ s \in [0, \cdots, l - w]\}. \]
Then get the upper and low data variances:

\[\sigma^2_t = \max\{\sigma^2_{t,20}, \sigma^2_{t-s,w}; s \in [0, \cdots, l-w]\}, \]

\[\sigma^2_{-t} = \min\{\sigma^2_{t,20}, \sigma^2_{t-s,w}; s \in [0, \cdots, l-w]\}. \]

\[\sigma^2_{t,w}(X_{t-w+1}, \cdots, X_t) \] is the std of \((X_{t-w+1}, \cdots, X_t)\).
Then get the upper and low data variances:

\[
\sigma^2_{\bar{t}} = \max\{\sigma^2_{t,20}, \sigma^2_{\bar{t}-s,w}; \ s \in [0, \cdots, l - w]\},
\]
\[
\underline{\sigma}^2_t = \min\{\sigma^2_{t,20}, \sigma^2_{t-s,w}; \ s \in [0, \cdots, l - w]\}.
\]

\[
\sigma^2_{\bar{t},w}(X_{\bar{t}-w+1}, \cdots, X_{\bar{t}}) \text{ is the std of } (X_{\bar{t}-w+1}, \cdots, X_{\bar{t}}).
\]

\[
\text{GVar}_{\alpha,\hat{t}}(X_{\hat{t}+1}) = -\max\{x: \ F_{G_{\hat{t}}}(x) \leq \alpha\}.
\]
Then get the upper and low data variances:

\[\sigma^2_{\bar{t}} = \max\{\sigma^2_{\bar{t},20}, \sigma^2_{\bar{t}-s,w}; \ s \in [0, \cdots, l-w]\}, \]
\[\sigma^2_{\underline{t}} = \min\{\sigma^2_{\bar{t},20}, \sigma^2_{\bar{t}-s,w}; \ s \in [0, \cdots, l-w]\}. \]

\[\sigma^2_{\bar{t},w}(X_{\bar{t}-w+1}, \cdots, X_{\bar{t}}) \] is the std of \((X_{\bar{t}-w+1}, \cdots, X_{\bar{t}})\).

\[\text{GVaR}_{\alpha,\bar{t}}(X_{\bar{t}+1}) = -\max\{x : F_{G_{\bar{t}}}(x) \leq \alpha\}. \]

\[F_G(x) = \int_{-\infty}^{x} \frac{\sqrt{2}}{\sqrt{\pi(\bar{\sigma} + \sigma)^2}} \left[\exp\left(\frac{-y^2}{2\sigma^2}\right)1_{y \leq 0} + \exp\left(\frac{-y^2}{2\sigma^2}\right)1_{y > 0} \right] dy. \]

(5)
Comparison:
Nonlinear expectation theory, especially sub linear expectation theory is an important tool to "hedge" the probability distribution uncertainty.

Maximal distribution and nonlinear normal distribution is fundamental, and can quantitatively cover most real world cases.
Nonlinear expectation theory, especially sub linear expectation theory is an important tool to "hedge" the probability distribution uncertainty.

Maximal distribution and nonlinear normal distribution is fundamental, and can quantitatively cover most real world cases.

The max-mean algorithm, based on the nonlinear LLN gives us the asymptotical optimal estimate of the nonlinear mean $\mathbb{E}[\varphi(X)]$ of X through its real data sample $\{x_i\}$ is very robust.

This algorithm provide us automatically the degree of uncertainty, through the degree of its nonlinearity.
According to our new law of large number, maximal distribution $M_{[\mu, \bar{\mu}]}$ is the other typical case which was often treated as a constant.
According to our new law of large number, maximal distribution $M_{[\mu, \mu]}$ is the other typical case which was often treated as a constant.

Need a deep collaboration of experts from probability, functional analysis, PDE and stochastic PDE, scientific computing, especially with experts of economics and statistics to develop this new, deep directions.
According to our new law of large number, maximal distribution $M_{[\mu, \bar{\mu}]}$ is the other typical case which was often treated as a constant.

Need a deep collaboration of experts from probability, functional analysis, PDE and stochastic PDE, scientific computing, especially with experts of economics and statistics to develop this new, deep directions.

Combining with machine learning, to get more robust and deeper understanding the information we can obtain through a real and dynamical sample \(\{x_i\} \).
A Nicole

3 × 25 Joyeux Anniversaire