Recent progresses of LLN and CTL under Uncertainty

Peng Shige

International Conference in Honor of Professor Nicole El Karoui for Her 75th Birthday, May 21-24 Paris

Peng Shige International Contractor progresses of LLN and CTL under

- I.I.D. assumptions for sequences of real world data $\{X_i\}_{i=1}^{\infty}$;
- Machine learning, deep learning, risk measuring pricing in finance ...
- Black-Scholes pricing formula, model uncertainty

- I.I.D. assumptions for sequences of real world data $\{X_i\}_{i=1}^{\infty}$;
- Machine learning, deep learning, risk measuring pricing in finance ...
- Black-Scholes pricing formula, model uncertainty
- Use nonlinear expectation, specially sublinear expectation,
- Covering probability uncertainty $\{P_{\theta}\}_{\theta \in \Theta}$

- I.I.D. assumptions for sequences of real world data $\{X_i\}_{i=1}^{\infty}$;
- Machine learning, deep learning, risk measuring pricing in finance ...
- Black-Scholes pricing formula, model uncertainty
- Use nonlinear expectation, specially sublinear expectation,
- Covering probability uncertainty $\{P_{\theta}\}_{\theta \in \Theta}$
- \bullet Nonlinearity of expectation \iff degree of uncertainty of probabilities

- I.I.D. assumptions for sequences of real world data $\{X_i\}_{i=1}^{\infty}$;
- Machine learning, deep learning, risk measuring pricing in finance ...
- Black-Scholes pricing formula, model uncertainty
- Use nonlinear expectation, specially sublinear expectation,
- Covering probability uncertainty $\{P_{\theta}\}_{\theta \in \Theta}$
- Nonlinearity of expectation \iff degree of uncertainty of probabilities
- Worst case philosophy:

$$\hat{\mathbb{E}}[X] := \max_{\theta \in \Theta} \frac{\mathcal{E}_{\mathcal{P}_{\theta}}[X]}{\mathcal{E}_{\mathcal{P}_{\theta}}[X]}, \quad -\hat{\mathbb{E}}[-X] := \min_{\theta \in \Theta} \frac{\mathcal{E}_{\mathcal{P}_{\theta}}[X]}{\mathcal{E}_{\mathcal{P}_{\theta}}[X]},$$

 $\hat{\mathbb{E}}$ is a sublinear expectation. Inversely...

• (Ω, \mathcal{F}, P) Probability space \iff Linear Expectation

- (Ω, \mathcal{F}, P) Probability space \iff Linear Expectation
- $(\Omega, \mathcal{H}, \mathbb{E}), \mathcal{H}$: a linear space of functions $X(\omega)$, called random variables, s.t.

- (Ω, \mathcal{F}, P) Probability space \iff Linear Expectation
- $(\Omega, \mathcal{H}, \mathbb{E}), \mathcal{H}$: a linear space of functions $X(\omega)$, called random variables, s.t.

- (Ω, \mathcal{F}, P) Probability space \iff Linear Expectation
- (Ω, H, E), H: a linear space of functions X(ω), called random variables, s.t.

- Nonlinear expectation $\mathbb{E}:\mathcal{H}\mapsto\mathbb{R}$
- \mathbbm{E} is a nonlinear functional
 - Monotonicity: $\mathbb{E}[X] \ge \mathbb{E}[Y]$ if $X \ge Y$

- (Ω, \mathcal{F}, P) Probability space \iff Linear Expectation
- (Ω, H, E), H: a linear space of functions X(ω), called random variables, s.t.

- Nonlinear expectation $\mathbb{E}:\mathcal{H}\mapsto\mathbb{R}$
- ullet $\mathbb E$ is a nonlinear functional
 - Monotonicity: $\mathbb{E}[X] \ge \mathbb{E}[Y]$ if $X \ge Y$
 - Constant preserving: $\mathbb{E}[c] = c$;

- (Ω, \mathcal{F}, P) Probability space \iff Linear Expectation
- (Ω, H, E), H: a linear space of functions X(ω), called random variables, s.t.

- Nonlinear expectation $\mathbb{E}:\mathcal{H}\mapsto\mathbb{R}$
- \mathbbm{E} is a nonlinear functional
 - Monotonicity: $\mathbb{E}[X] \ge \mathbb{E}[Y]$ if $X \ge Y$
 - Constant preserving: $\mathbb{E}[c] = c$;
 - Sublinearity: $\mathbb{E}[X + Y] \leq \mathbb{E}[X] + \mathbb{E}[Y]$ and

$$\mathbb{E}[\lambda X] = \lambda \mathbb{E}[X], \ \forall \lambda \ge 0$$

- (Ω, \mathcal{F}, P) Probability space \iff Linear Expectation
- (Ω, H, E), H: a linear space of functions X(ω), called random variables, s.t.

- Nonlinear expectation $\mathbb{E}:\mathcal{H}\mapsto\mathbb{R}$
- $\mathbb E$ is a nonlinear functional
 - Monotonicity: $\mathbb{E}[X] \ge \mathbb{E}[Y]$ if $X \ge Y$
 - Constant preserving: $\mathbb{E}[c] = c$;
 - Sublinearity: $\mathbb{E}[X + Y] \leq \mathbb{E}[X] + \mathbb{E}[Y]$ and

$$\mathbb{E}[\lambda X] = \lambda \mathbb{E}[X], \ \forall \lambda \ge 0$$

•
$$\mathbb{E}[X_i] \downarrow 0$$
, if $X_i(\omega) \downarrow 0$, $\forall \omega$

Covering the risk of probability uncertainty by sublinear expectation

• Very useful parameterized sublinear models

Covering the risk of probability uncertainty by sublinear expectation

- Very useful parameterized sublinear models
- Sublinear is the necessary to cover the uncertainty of probabilities

Covering the risk of probability uncertainty by sublinear expectation

- Very useful parameterized sublinear models
- Sublinear is the necessary to cover the uncertainty of probabilities

$$\mathbb{E}[X] = \max_{\theta \in \Theta} E_{\theta}[X] = \max_{\theta \in \Theta} \int_{\Omega} X dP_{\theta},$$

$$\mathbb{E}[X] = \max_{\theta \in \Theta} E_{\theta}[X] = \max_{\theta \in \Theta} \int_{\Omega} X dP_{\theta},$$

$\{P_{\theta}\}_{\theta \in \Theta}$: probability model uncertainty

$$\mathbb{E}[X] = \max_{\theta \in \Theta} E_{\theta}[X] = \max_{\theta \in \Theta} \int_{\Omega} X dP_{\theta},$$

$\{P_{\theta}\}_{\theta \in \Theta}$: probability model uncertainty

 $F_{\theta}(x) := P_{\theta}(X \leq x)$

$$\mathbb{E}[X] = \max_{\theta \in \Theta} E_{\theta}[X] = \max_{\theta \in \Theta} \int_{\Omega} X dP_{\theta},$$

$\{P_{\theta}\}_{\theta \in \Theta}$: probability model uncertainty

$$F_{\theta}(x) := P_{\theta}(X \le x)$$
$$\mathbb{F}[\varphi] = \sup_{\theta \in \Theta} F_{\theta}[\varphi] = \sup_{\theta \in \Theta} \int_{\Omega} \varphi(X) dP_{\theta}$$

Uncertainty version of I.I.D. of two random variables X and Y

Definition

 The distribution uncertainty of a random X equals to (resp. stronger than) that of Y, if for any test function φ(x),

Uncertainty version of I.I.D. of two random variables X and Y

Definition

 The distribution uncertainty of a random X equals to (resp. stronger than) that of Y, if for any test function φ(x),

$$\mathbb{E}[\varphi(X)] = \mathbb{E}[\varphi(Y)], \quad ext{denoted by } X \stackrel{d}{=} Y$$

$$(\operatorname{\mathit{resp}}.\mathbb{E}[\varphi(X)] \ge \mathbb{E}[\varphi(Y)], \quad ext{denoted by } X \stackrel{a}{\ge} Y)$$

• Y is independent of X if for any test function $\varphi(x, y)$,

$$\mathbb{E}[\varphi(X, Y)] = \mathbb{E}[\mathbb{E}[\varphi(x, Y)]_{x=X}].$$

$\mathbb{E}[\varphi(X_i)] = \mathbb{E}[\varphi(X_1)], X_{i+1} \text{ is independent of } (X_1, \cdots, X_i), \text{ for all } i.$

Remark.

$\{X_i\}_{i=1}^\infty \text{ is an IID } \implies \{\varphi(X_i)\}_{i=1}^\infty \text{ is also IID } \forall \varphi$

- At time t = 1, we randomly choose a ball from an urn containing Black and White balls ($W_1 + B_1 = 100$)
- But we know only $W_1 \in [40, 60]$

۰

$$X_1(\omega) = \mathbf{1}_{\{W_1 = \text{true}\}} - \mathbf{1}_{\{B_1 = \text{true}\}}$$

• Each time *i*, W_i is changed within $W_i \in [40, 60]$

- Each time *i*, W_i is changed within $W_i \in [40, 60]$
- We get a sequence of random variables $\{X_i(\omega)\}_{i=1}^{\infty}$;

- Each time *i*, W_i is changed within $W_i \in [40, 60]$
- We get a sequence of random variables $\{X_i(\omega)\}_{i=1}^{\infty}$;
- This is a typical case of our daily uncertainty: enveronment changes all the time
- The output $\{X_i\}_{i=1}^{\infty}$ is IID:
 - X_1, X_2, \cdots are identically distributed (same distribution uncertainty)
 - X_{i+1} is independent of $\{X_i\}_{i=1}^n$.
- $S_n = \sum_{i=1}^n X_i$: a nonlinear Bernoulli random walk.
- $\{\varphi(X_i)\}_{i=1}^{\infty}$ is also IID, for any given function $\varphi(x)$.

A general random generator of nonlinear IID sequence $\{X_i\}_{i=1}^{\infty}$

• The urn \implies A generator of random vectors X_i , at time t = i,

$$X_i(\omega) \stackrel{d}{=} F_{\theta}, \quad i = 1, 2, 3, \cdots$$

We can observe the output X_i at t = i with

 $\mathcal{L}(X_i) \in \{F_{\theta}\}_{\theta \in \Theta}$

A general random generator of nonlinear IID sequence $\{X_i\}_{i=1}^{\infty}$

• The urn \implies A generator of random vectors X_i , at time t = i,

$$X_i(\omega) \stackrel{d}{=} F_{\theta}, \quad i = 1, 2, 3, \cdots$$

We can observe the output X_i at t = i with

$$\mathcal{L}(X_i) \in \{F_{\theta}\}_{\theta \in \Theta}$$

• $X_{i+1} \stackrel{d}{=} X_i$, X_{i+1} is independent of (X_1, X_2, \cdots, X_i)

An important special case: I.I.D. maximal distributed sequence $\{X_i\}_{i=1}^{\infty}$

{*F*_θ}_{θ∈Θ} = *M*_[μ,μ]: all prob. distributions concentrated on [μ, μ].
 Many cases, we have

$$\mathcal{L}(X_i) \in \{F_{ heta}\}_{ heta \in \Theta_i}$$
, $\Theta_i \subset \Theta$

But we use $X_i \stackrel{d}{=} \{F_\theta\}_{\theta \in \Theta}$ to robustly cover the uncertainty.

• Example: Maximally-distributed i.i.d sequence $\{X_i\}_{i=1}^{\infty}$: covers all possible distributions of the sequence satisfying

$$\underline{\mu} \leq X_i(\omega) \leq \overline{\mu}, \quad i = 1, 2, \cdots \quad \mathbb{E}[\varphi(X_i)] = \max_{\mathbf{v} \in [\mu, \overline{\mu}]} \varphi(\mathbf{v})$$

• Example: Maximally-distributed i.i.d sequence $\{X_i\}_{i=1}^{\infty}$: covers all possible distributions of the sequence satisfying

$$\underline{\mu} \leq X_i(\omega) \leq \overline{\mu}, \quad i = 1, 2, \cdots \quad \mathbb{E}[\varphi(X_i)] = \max_{v \in [\underline{\mu}, \overline{\mu}]} \varphi(v)$$

$$X_i \stackrel{d}{=} M_{[\underline{\mu},\overline{\mu}]}$$

• Example: Maximally-distributed i.i.d sequence $\{X_i\}_{i=1}^{\infty}$: covers all possible distributions of the sequence satisfying

$$\underline{\mu} \leq X_i(\omega) \leq \overline{\mu}, \quad i = 1, 2, \cdots \quad \mathbb{E}[\varphi(X_i)] = \max_{\nu \in [\underline{\mu}, \overline{\mu}]} \varphi(\nu)$$

$$X_i \stackrel{d}{=} M_{[\underline{\mu},\overline{\mu}]}.$$

• Connected to Error Calculation: method widely used in the human history, longtime before the birth of Probability Theory.

• Example: Maximally-distributed i.i.d sequence $\{X_i\}_{i=1}^{\infty}$: covers all possible distributions of the sequence satisfying

$$\underline{\mu} \leq X_i(\omega) \leq \overline{\mu}, \quad i = 1, 2, \cdots \quad \mathbb{E}[\varphi(X_i)] = \max_{\mathbf{v} \in [\underline{\mu}, \overline{\mu}]} \varphi(\mathbf{v})$$

$$X_i \stackrel{d}{=} M_{[\underline{\mu},\overline{\mu}]}$$

- Connected to Error Calculation: method widely used in the human history, longtime before the birth of Probability Theory.
- Thus, principally, all random sequences can be treated as an nonlinear IID random sequence.
- How to narrow down $\overline{\mu} \mu$ through real data is our important task

• Example: Maximally-distributed i.i.d sequence $\{X_i\}_{i=1}^{\infty}$: covers all possible distributions of the sequence satisfying

$$\underline{\mu} \leq X_i(\omega) \leq \overline{\mu}, \quad i = 1, 2, \cdots \quad \mathbb{E}[\varphi(X_i)] = \max_{\mathbf{v} \in [\underline{\mu}, \overline{\mu}]} \varphi(\mathbf{v})$$

$$X_i \stackrel{d}{=} M_{[\underline{\mu},\overline{\mu}]}$$

- Connected to Error Calculation: method widely used in the human history, longtime before the birth of Probability Theory.
- Thus, principally, all random sequences can be treated as an nonlinear IID random sequence.
- $\bullet\,$ How to narrow down $\overline{\mu}-\mu$ through real data is our important task
- Challenging objective: to establish a systematic framework $(\Omega, \mathcal{H}, \mathbb{E})$ compatible with (Ω, \mathcal{F}, P)
- Important: hidden behind are PDEs (linear/nonlinear heat equation)!

Two fundamentally important nonlinear distributions

The universality of the IID assumption under sublinear expectation

For a bounded random sequence {X_i}[∞]_{i=1} one can always enlarge the probability uncertainty so that {X_i}[∞]_{i=1} is an I.I.D. sequence under the enforced sublinear expectation 𝔼.

Lemma

Assume that a random sequence $\{X_i\}_{i=1}^{\infty}$ is bounded by $\underline{\mu} \leq X_i \leq \overline{\mu}$. Then we have $X_i \stackrel{d}{\leq} \bar{X}_i$ and $\{X_i\}_{i=1}^{\infty} \stackrel{d}{\leq} \{\bar{X}_i\}_{i=1}^{\infty}$, where $\{\bar{X}_i\}_{i=1}^{\infty}$ is an IID sequence with $\bar{X}_i \stackrel{d}{=} M_{[\underline{\mu},\overline{\mu}]}$.

The universality of the IID assumption under sublinear expectation

For a bounded random sequence {X_i}[∞]_{i=1} one can always enlarge the probability uncertainty so that {X_i}[∞]_{i=1} is an I.I.D. sequence under the enforced sublinear expectation 𝔼.

Lemma

Assume that a random sequence $\{X_i\}_{i=1}^{\infty}$ is bounded by $\underline{\mu} \leq X_i \leq \overline{\mu}$. Then we have $X_i \stackrel{d}{\leq} \bar{X}_i$ and $\{X_i\}_{i=1}^{\infty} \stackrel{d}{\leq} \{\bar{X}_i\}_{i=1}^{\infty}$, where $\{\bar{X}_i\}_{i=1}^{\infty}$ is an IID sequence with $\bar{X}_i \stackrel{d}{=} M_{[\mu,\overline{\mu}]}$.

Thus one can robustly enforce $\mathbb{E}[\cdot]$ and assume that $\{X_i\}_{i=1}^{\infty}$ is IID under $\mathbb{E}[\cdot]$.

The universality of the IID assumption under sublinear expectation

• If a random sequence $\{X_i\}_{i=1}^{\infty}$ is not bounded, we can set

$$Y_i^{(j)} = rac{2}{\pi} \arctan(X_i^{(j)}), \ \ j = 1, 2, \cdots, d.$$

Then $\{Y_i\}_{i=1}^{\infty}$ can be robustly assumed to be IID.

- On the other hand, the 'IID' assumption is very flexible and can cover many important cases.
- Example If $\{X_i\}_{i=1}^{\infty}$ is i.i.d. and the distribution of X_1 is linear, then it becomes to IID sequence in the classical case.

Let $\{Y_i\}_{i=1}^{\infty}$ be IID sequence. Assume $\lim_{c\to\infty} \mathbb{E}[(|Y_1|-c)^+] = 0$.

Let $\{Y_i\}_{i=1}^{\infty}$ be IID sequence. Assume $\lim_{c\to\infty} \mathbb{E}[(|Y_1|-c)^+] = 0$.. Then, for each $\varphi \in C_b(\mathbb{R})$,

$$\lim_{n \to \infty} \mathbb{E}[\varphi(\frac{Y_1 + \dots + Y_n}{n})] = \mathbb{E}[(\varphi(\mathbf{Y})] = \max_{\mathbf{v} \in [\underline{\mu}, \overline{\mu}]} \varphi(\mathbf{v}).$$

where $\overline{\mu} = \mathbb{E}[Y_1], \ \underline{\mu} = -\mathbb{E}[-Y_1].$

Let $\{Y_i\}_{i=1}^{\infty}$ be IID sequence. Assume $\lim_{c\to\infty} \mathbb{E}[(|Y_1|-c)^+] = 0$.. Then, for each $\varphi \in C_b(\mathbb{R})$,

$$\lim_{n \to \infty} \mathbb{E}[\varphi(\frac{Y_1 + \dots + Y_n}{n})] = \mathbb{E}[(\varphi(\mathbf{Y})] = \max_{\mathbf{v} \in [\underline{\mu}, \overline{\mu}]} \varphi(\mathbf{v}).$$

where $\overline{\mu} = \mathbb{E}[Y_1], \ \underline{\mu} = -\mathbb{E}[-Y_1].$

$$Y \stackrel{d}{=} M_{[\overline{\mu},\underline{\mu}]}$$
: Maximal distribution.

Let $\{Y_i\}_{i=1}^{\infty}$ be IID sequence. Assume $\lim_{c\to\infty} \mathbb{E}[(|Y_1|-c)^+] = 0$.. Then, for each $\varphi \in C_b(\mathbb{R})$,

$$\lim_{n \to \infty} \mathbb{E}[\varphi(\frac{Y_1 + \dots + Y_n}{n})] = \mathbb{E}[(\varphi(Y)] = \max_{v \in [\underline{\mu}, \overline{\mu}]} \varphi(v).$$

where $\overline{\mu} = \mathbb{E}[Y_1], \ \underline{\mu} = -\mathbb{E}[-Y_1].$

 $\label{eq:main_state} \begin{array}{l} \mathbf{Y} \stackrel{d}{=} M_{[\overline{\mu},\underline{\mu}]}: \ \ \textit{Maximal distribution}. \end{array}$ $u(x,t):= \mathbb{E}[\varphi(x+(1-t)\mathbf{Y})] \ \text{solves the 1st order PDE} \end{array}$

Theorem (Peng2008-2010)

Let $\{X_i\}_{i=1}^{\infty}$ be IID sequence. Assume furthermore

$$\mathbb{E}[(|X_1|^{2+\epsilon}] < \infty \quad \mathbb{E}[X_1] = \mathbb{E}[-X_1] = 0$$

Then, for each $\varphi \in C_b(\mathbb{R})$,

$$\lim_{n\to\infty} \mathbb{E}[\varphi(\frac{X_1+\cdots+X_n}{\sqrt{n}})] = u^{\varphi}(0,0) = \mathcal{N}_G(\varphi).$$

$$\begin{aligned} \partial_t u^{\varphi} + G(\partial_{xx}^2 u^{\varphi}) &= 0, \quad t \in [0, 1], \quad u^{\varphi}(1, x) = \varphi(x), \\ G(a) &:= \frac{1}{2} [\overline{\sigma}^2 a^+ - \overline{\sigma}^2 a^-] \\ \overline{\sigma}^2 &:= \mathbb{E}[X_1^2], \quad \underline{\sigma}^2 &:= -\mathbb{E}[-X_1^2] > 0, \end{aligned}$$

| 4 同 🕨 🖌 🖉 🕨 🖌 🗐 🕨

Theorem (Peng2008-2010)

Let $\{X_i\}_{i=1}^{\infty}$ be IID sequence. Assume furthermore

$$\mathbb{E}[(|X_1|^{2+\epsilon}] < \infty \quad \mathbb{E}[X_1] = \mathbb{E}[-X_1] = 0$$

Then, for each $\varphi \in C_b(\mathbb{R})$,

$$\lim_{n\to\infty} \mathbb{E}[\varphi(\frac{X_1+\cdots+X_n}{\sqrt{n}})] = u^{\varphi}(0,0) = \mathcal{N}_G(\varphi).$$

$$\begin{aligned} \partial_t u^{\varphi} + G(\partial_{xx}^2 u^{\varphi}) &= 0, \quad t \in [0, 1], \quad u^{\varphi}(1, x) = \varphi(x), \\ G(a) &:= \frac{1}{2} [\overline{\sigma}^2 a^+ - \overline{\sigma}^2 a^-] \\ \overline{\sigma}^2 &:= \mathbb{E}[X_1^2], \quad \underline{\sigma}^2 &:= -\mathbb{E}[-X_1^2] > 0, \end{aligned}$$

| 4 同 🕨 🖌 🖉 🕨 🖌 🗐 🕨

Sketch of the proof: $u \in C^{1+\frac{\alpha}{2},2+\alpha}$ [Krylov]

$$\lim_{n \to \infty} \mathbb{E}[\varphi(S_n^n)] = u^{\varphi}(0,0),$$

$$S_k^n := \frac{1}{\sqrt{n}} (X_1 + \dots + X_k), \ k = 1, \dots, n.$$

$$u(S_n^n, 1) - u(0,0) = \sum_{k=0}^{n-1} [u(S_{k+1}^n, \frac{k+1}{n}) - u(S_k^n, \frac{k}{n})]$$

◆□▶ ◆圖▶ ◆厘▶ ◆厘≯

Sketch of the proof: $u \in C^{1+\frac{\alpha}{2},2+\alpha}$ [Krylov]

$$\lim_{n \to \infty} \mathbb{E}[\varphi(S_n^n)] = u^{\varphi}(0,0),$$

$$S_k^n := \frac{1}{\sqrt{n}} (X_1 + \dots + X_k), \ k = 1, \dots, n.$$

$$u(S_n^n, 1) - u(0,0) = \sum_{k=0}^{n-1} [u(S_{k+1}^n, \frac{k+1}{n}) - u(S_k^n, \frac{k}{n})]$$

$$\mathbb{E}[u(S_{k+1}^{n}, \frac{k+1}{n}) - u(S_{k}^{n}, \frac{k}{n})] = \mathbb{E}[u(S_{k}^{n} + \frac{1}{\sqrt{n}}X_{k+1}, \frac{k}{n} + \frac{1}{n}) - u(S_{k}^{n}, \frac{k}{n})]$$

$$= \mathbb{E}[\frac{1}{n}\partial_{t}u(x, t) + \frac{X_{k+1}}{\sqrt{n}}\partial_{x}u(x, t) + \frac{X_{k+1}^{2}}{2n}\partial_{xx}^{2}u(x, t)] + o(\frac{1}{n})$$

$$= 0 + o(\frac{1}{n}), \qquad (x, t) = (S_{k}^{n}, \frac{k}{n})$$

◆□▶ ◆圖▶ ◆厘▶ ◆厘≯

Theorem (Fang-Peng-Shao-Song(2017))

We have

$$\mathbb{E}[d_{[\underline{\mu},\overline{\mu}]}^2(\overline{X}_n)] = \mathbb{E}[((\overline{X}_n - \overline{\mu})^+)^2 + ((\overline{X}_n - \underline{\mu})^-)^2] \le \frac{2[\overline{\sigma}^2 + (\overline{\mu} - \underline{\mu})^2]}{n},$$
(1)

where

$$\overline{\mu} = \mathbb{E}[X_1], \ \underline{\mu} = -\mathbb{E}[-X_1].$$

and

$$\overline{\sigma}^2 := \sup_{\theta \in \Theta} E_{P_{\theta}}[(X_1 - E_{P_{\theta}}[X_1])^2].$$

< 17 ▶

Remark. ([Fang-P.-Shao,Song 2017])

If $\overline{\mu} > \underline{\mu}$ then the convergence of $\frac{1}{n}(X_1 + \cdots + X_n))$ to cannot be a strong one!

[Fang-P.-Shao,Song] (2017) Limit theorems with rate of convergence under sublinear expectations.

Stein equation: the key tool of Stein method. Song (2017) had found the corresponding "Stein equation", and provided Nonlinear Stein method.

the rate of convergence is::

$$\sup_{|\varphi|_{Lip} \le 1} \left| \hat{\mathsf{E}}[\varphi(\frac{X_1 + \dots + X_n}{\sqrt{n}})] - \mathcal{N}_{\mathsf{G}}(\varphi) \right| \lesssim \frac{1}{n^{\frac{\alpha}{2}}},$$

where $\alpha \in (0, 1)$ depends only on $-\mathbf{\hat{E}}[-X_1^2]$ and $\mathbf{\hat{E}}[X_1^2]$.

Theorem (Krylov 2018)

Assume that $|\phi(x) - \phi(y)| \le |x - y|^{\beta}$, $M_{\beta} := \sup_{\xi \in \Theta} E(|\xi|^{2+\beta}) < \infty$. Then $|\mathbb{E}[\varphi(\frac{1}{n}(Y_1 + \dots + Y_n))] - \mathbb{E}[\varphi(Y)]| \le Nn^{-\beta^2/(4+2\beta)}$

where N depends only on M_{β} and $\underline{\sigma}^2$.

- [Jin &Peng] (2016) Optimal unbiased estimation for maximal distribution, arXiv:1611.07994v1,
- [Fang-Peng.-Shao & Song] (2017) Limit theorems with rate of convergence under sublinear expectations, arxiv.
- [Song] (2017) Normal approximation by Stein's method under sublinear expectations",
- [Krylov 2018] "On Shige Peng's Central Limit Theorem" , arxiv

- [Maccheroni & Marinacci] (2005) "A strong law of large numbers for capacities", Ann. Probab. 33, 1171-1178.
- [Marinacci] (1999) "Limit laws for non-additive probabilities and their frequentist interpretation", J. Econom. Theory.

Definition

A random variable X in $(\Omega, \mathcal{H}, \mathbb{E})$ is normal if the function

$$u(t,x) := \mathbb{E}[\varphi(x + \sqrt{1 - t}X)]$$

is the solution of the nonlinear PDE

$$\partial_t u + G(\partial_{xx}u) = 0, \ u(1,x) = \varphi(x).$$

Definition

A random variable X in $(\Omega, \mathcal{H}, \mathbb{E})$ is normal if the function

$$u(t,x) := \mathbb{E}[\varphi(x + \sqrt{1 - t}X)]$$

is the solution of the nonlinear PDE

$$\partial_t u + G(\partial_{xx}u) = 0, \ u(1, x) = \varphi(x).$$

where

•
$$G(a) = \frac{1}{2}[\overline{\sigma}^2 a^+ - \underline{\sigma}^2 a^-]$$
 $\overline{\sigma}^2 = \mathbb{E}[X^2], \ \underline{\sigma}^2 = -\mathbb{E}[-X^2]$

Classical 'Monté-Carlo' approach for estimating $\mathbb{\hat{E}}[\varphi(X)]$ through data

- Key point: How to obtain $\hat{\mathbb{E}}[\varphi(X)]$ through its sample $\{x_i\}_{i=1}^N$?
- In many practice cases: we care about Ê[φ(X)] with a specific function φ(x):
 a consumption utility function, a contract, a cost function
- In a classical probability space (Ω, \mathcal{F}, P) , we can apply LLN to calculate

$$E[\varphi(X)] \sim \mathbb{M}[\varphi(X)] := \frac{1}{N} \sum_{i=1}^{N} \varphi(x_i)$$

where $\{x_i\}_{i=1}^N$ is an IID sample of X.

Classical 'Monté-Carlo' approach for estimating $\mathbb{\hat{E}}[\varphi(X)]$ through data

- Key point: How to obtain $\hat{\mathbb{E}}[\varphi(X)]$ through its sample $\{x_i\}_{i=1}^N$?
- In many practice cases: we care about Ê[φ(X)] with a specific function φ(x):
 a consumption utility function, a contract, a cost function
- In a classical probability space (Ω, \mathcal{F}, P) , we can apply LLN to calculate

$$E[\varphi(X)] \sim \mathbb{M}[\varphi(X)] := \frac{1}{N} \sum_{i=1}^{N} \varphi(x_i)$$

where $\{x_i\}_{i=1}^N$ is an IID sample of X. • But: Is $\{x_i\}_{i=1}^N$ a classical IID?

φ -max-mean algorithm: the data-based distribution of X

 \bullet Let $(\Omega, \mathcal{H}, \hat{\mathbb{E}})$ be a sublinear expectation space and

 ${x_i}_{i=1}^{n \times m}$: IID sample of a random vector X

• The max-mean algorithm to estimate $\hat{\mathbb{E}}[\varphi(X)]$:

$$\hat{\mathbb{M}}[\varphi] = \max\{Y_n^k : k = 0, \cdots, m-1\},\$$

where

$$Y_n^k = \frac{1}{n} \sum_{i=1}^n \varphi(x_{nk+i}).$$

• By the above LLN, as $n \to \infty$, $\{Y_n^k\}_{k=0}^{m-1} \stackrel{d}{\Longrightarrow}$ an IID $\{Y^k\}_{k=0}^{m-1}$,

$$Y^k \stackrel{d}{=} M_{[\underline{\mu},\overline{\mu}]}$$
, with $\overline{\mu} = \hat{\mathbb{E}}[\varphi(X)]$, $\underline{\mu} = -\hat{\mathbb{E}}[-\varphi(X)]$

• But $\max{Y_n^k : k = 0, \dots, m-1}$ provides us the asymptotically optimal unbiased estimate .

φ -max-mean algorithm of X from IID sample $\{x_i\}_{i=1}^{mn}$

$$= \max_{0 \le k \le m-1} \frac{2n = 1}{n}$$

Peng Shige International Contractor progresses of LLN and CTL under

Optimality of the estimate

The optimality of the above estimate is based on the following quite simple, but very fundamental result:

Theorem (Jin-Peng2016)

Let Y^1, \dots, Y^m be IID and maximally distributed:

$$Y^{i}\stackrel{d}{=}M_{[\mu,\overline{\mu}]},\quad i=1,\cdots,m,$$

where $\mu \leq \overline{\mu}$ is two unknown parameters. Then

< 17 ▶

Optimality of the estimate

The optimality of the above estimate is based on the following quite simple, but very fundamental result:

Theorem (Jin-Peng2016)

Let Y^1, \dots, Y^m be IID and maximally distributed:

$$Y^{i} \stackrel{d}{=} M_{[\underline{\mu},\overline{\mu}]}, \quad i = 1, \cdots, m,$$

where $\mu \leq \overline{\mu}$ is two unknown parameters. Then

$$\underline{\mu} \leq \min\{Y^1(\omega), \cdots, Y^n(\omega)\} \leq \max\{Y^1(\omega), \cdots, Y^n(\omega)\} \leq \overline{\mu}$$

Moreover

$$\widehat{\overline{\mu}}_n = \max\{Y^1, \cdots, Y^n\},\$$

is the maximum unbiased estimate of $\overline{\mu}$.

• Many typical nonlinear distributions

$$M_{[\underline{\mu},\overline{\mu}]}$$
, $N(\mu, [\underline{\sigma}^2, \overline{\sigma}^2])$, $P_{[\underline{\lambda},\overline{\lambda}]}$ (Nonlinear Poisson)

• asymptotically unbiased estimates: ,

$$\underline{\hat{\sigma}}^2 := \min_{1 \le k \le m} \sigma_k^2, \quad \overline{\hat{\sigma}}^2 := \max_{1 \le k \le m} \sigma_k^2$$
where $\sigma_k^2 := \frac{1}{n} \sum_{j=1}^n (x_{n(k-1)+j} - \mu)^2.$

Maximal and Normal distributions and Nonlinear PDEs

•
$$Y \stackrel{d}{=} M_{[\underline{\mu},\overline{\mu}]}$$
 defined by $aY + b\bar{Y} \stackrel{d}{=} (a+b)Y$;
is directly related to the 1st order PDE

$$\partial_t u^{\varphi} + g(\partial_x u^{\varphi}) = 0,$$

 $u^{\varphi}(x, 1) = \varphi(x).$

for $u^{\varphi}(t,x)$ on $t \in [0,1]$, $x \in \mathbb{R}^d$.

• Through

$$\mathbb{F}_{g}[\varphi] := u^{\varphi}(0,0) = \mathbb{E}[\varphi(Y)].$$

Maximal and Normal distributions and Nonlinear PDEs

• $X \stackrel{d}{=} N(0, [\underline{\sigma}^2, \overline{\sigma}^2])$ defined by $aX + b\bar{X} \stackrel{d}{=} \sqrt{a^2 + b^2}X$ is calculated by the 2nd order parabolic PDEs

$$\partial_t v^{\varphi} + G(\partial_{xx}^2 v^{\varphi}) = 0,$$

 $v^{\varphi}(x, 1) = \varphi(x).$

Through :

$$\mathbb{F}_{G}[\varphi] := \mathbf{v}^{\varphi}(\mathbf{0}, \mathbf{0}) = \mathbb{E}[\varphi(X)]$$

$$\begin{cases} \partial_t u(t, x) + g(\partial_x u) = 0\\ u(T, x) = \varphi(x) \end{cases}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶

²⁰Г

٨

・ロト ・聞と ・ 聞と ・ 聞と

a

20 L

*

・ロト ・聞と ・ 聞と ・ 聞と

$$\begin{cases} \partial_t u(t, x) + G(\partial_{xx}^2 u) = 0\\ u(T, x) = \varphi(x) \end{cases}$$

7

a

$$\begin{cases} \partial_t u(t,x) + g(\partial_x u) = 0\\ u(T,x) = \varphi(x) \end{cases} \qquad g(a) : \int_{a}^{a} \int_{a}^{a}$$

▲口> ▲圖> ▲国> ▲国>

Papers on statistics and data-analysis under uncertainty

- Chen-Peng (2009) Report on testing and finding the generating functions *g* of an option pricing mechanism through market data, in Industrial and Applied Mathematics in China, (Ta-Tsien Li & Pingwen Zhang eds) High Education Press.
- Fang-Peng-Shao-Song (2017): Limit theorems with rate of convergence under sublinear expectations, in Arxiv2017.
- Jin-Peng (2016) Optimal unbiased estimation for maximal distribution. in arXiv:1611.07994v1.
- P. (2010) Nonlinear Expectations and Stochastic Calculus under Uncertainty (2010a). Preprint: arXiv:1002.4546
- P. (2015) Covering the uncertainty of distributions by nonlinear expectation, nonlinear PDE and BSDE, in Proceedings of the 8th ICIAM.
- Peng-Yang-Yao (2018): Improving Value-at-Risk prediction under model uncertainty, preprint.

Works on limit theory with nonlinear expectations

- P. 2006: G-expectation, G-Brownian motion and related stochastic calculus of Ito's type. The Abel Symposium 2005, Springer.
- P. (2008) A new central limit theorem under sublinear expectations
- P. (2010) Nonlinear Expectations and Stochastic Calculus under Uncertainty (2010a). Preprint: arXiv:1002.4546 [math.PR]
- Zhang (2015) Donsker's invariance principle under the sublinear expectation with an application to Chung's law of the iterated logarithm. Commun. Math. Stat .

Nonlinear Brownian Motion: (Continuous time i.i.d)

Definition.

B is called a G-Brownian motion if:

Definition.

B is called a G-Brownian motion if:

• For each $t_1 \leq \cdots \leq t_n$, $B_{t_n} - B_{t_{n-1}}$ is indep. of $(B_{t_1}, \cdots, B_{t_{n-1}})$.

Definition.

B is called a G-Brownian motion if:

• For each $t_1 \leq \cdots \leq t_n$, $B_{t_n} - B_{t_{n-1}}$ is indep. of $(B_{t_1}, \cdots, B_{t_{n-1}})$.

•
$$B_t \stackrel{d}{=} B_{s+t} - B_s$$
, for all $s, t \ge 0$

Definition.

B is called a G-Brownian motion if:

• For each $t_1 \leq \cdots \leq t_n$, $B_{t_n} - B_{t_{n-1}}$ is indep. of $(B_{t_1}, \cdots, B_{t_{n-1}})$.

•
$$B_t \stackrel{d}{=} B_{s+t} - B_s$$
, for all $s, t \geq 0$

•
$$\mathbb{E}[|B_t|^3] = o(t).$$

Definition.

B is called a G-Brownian motion if:

• For each $t_1 \leq \cdots \leq t_n$, $B_{t_n} - B_{t_{n-1}}$ is indep. of $(B_{t_1}, \cdots, B_{t_{n-1}})$.

•
$$B_t \stackrel{d}{=} B_{s+t} - B_s$$
, for all $s, t \geq 0$

•
$$\mathbb{E}[|B_t|^3] = o(t).$$

Theorem.

If $(B_t)_{t\geq 0}$ is a *G*-Brownian motion and $\mathbb{E}[B_t] = \mathbb{E}[-B_t] \equiv 0$ then: $B_{t+s} - B_s \stackrel{d}{=} N(0, [\underline{\sigma}^2 t, \overline{\sigma}^2 t]), \forall s, t \geq 0$

$$VaR^{F}_{\alpha}(X) = -\inf\{x \mid P(X \le x) > \alpha\}$$
$$= -\inf\{x \mid F(x) > \alpha\},\$$

$$\operatorname{VaR}_{\alpha}^{F}(X) = -\inf\{x \mid P(X \le x) > \alpha\}$$
$$= -\inf\{x \mid F(x) > \alpha\},\$$

Can we use G-normal distribution in the place of a linear distribution F?

Nonlinear normally distributed VaR —G-VaR:

$$X_{t+1} \stackrel{d}{=} \mathcal{N}_G.$$

$$\operatorname{VaR}_{\alpha}^{F}(X) = -\inf\{x \mid P(X \le x) > \alpha\}$$
$$= -\inf\{x \mid F(x) > \alpha\},\$$

Can we use G-normal distribution in the place of a linear distribution F?

Nonlinear normally distributed VaR —G-VaR:

$$X_{t+1} \stackrel{d}{=} \mathcal{N}_G.$$

• $\{X_t\}$: of daily return data of CSI300, April 13, 2010- April 16, 2015;

$$\operatorname{VaR}_{\alpha}^{F}(X) = -\inf\{x \mid P(X \le x) > \alpha\}$$
$$= -\inf\{x \mid F(x) > \alpha\},\$$

Can we use G-normal distribution in the place of a linear distribution F?

• Nonlinear normally distributed VaR — G-VaR:

$$X_{t+1} \stackrel{d}{=} \mathcal{N}_G.$$

- $\{X_t\}$: of daily return data of CSI300, April 13, 2010- April 16, 2015;
- {X_t}: S&P 500 daily returns from 04/03/2010 to 09/12/2014,

Peng Shige International ConfiRecent progresses of LLN and CTL under

< 4 → <

Empirical test of robust VaR

$$\operatorname{GVaR}_{\alpha}(X) := -\inf\{x \in \mathbb{R} : F_{G}(x) > \alpha\}.$$

We have

$$F_G(x) = u(t,x)|_{t=0},$$

< 17 ▶

ㅋ ㅋ ㅋ

Empirical test of robust VaR

$$\operatorname{GVaR}_{\alpha}(X) := -\inf\{x \in \mathbb{R} : F_{G}(x) > \alpha\}.$$

We have

$$F_G(x) = u(t,x)|_{t=0},$$

u is the solution of the PDE

$$\partial_t u + G(\partial_{xx}^2 u) = 0,$$
 (2)

with the Cauchy

$$u(1, x) = \mathbf{1}_{[0,\infty)}(x).$$
 (3)

Empirical test of robust VaR

$$\operatorname{GVaR}_{\alpha}(X) := -\inf\{x \in \mathbb{R} : F_{G}(x) > \alpha\}.$$

We have

$$F_G(x) = u(t,x)|_{t=0},$$

u is the solution of the PDE

$$\partial_t u + G(\partial_{xx}^2 u) = 0,$$
 (2)

with the Cauchy

$$u(1, x) = \mathbf{1}_{[0,\infty)}(x).$$
 (3)

 F_G has the explicit expression:

$$F_{G}(x) = \int_{-\infty}^{x} \frac{\sqrt{2}}{\sqrt{\pi(\overline{\sigma} + \underline{\sigma})^{2}}} \left[\exp(\frac{-y^{2}}{2\overline{\sigma}^{2}}) \mathbf{1}_{y \leq 0} + \exp(\frac{-y^{2}}{2\underline{\sigma}^{2}}) \mathbf{1}_{y > 0} \right] dy.$$
(4)

• X_{t+1} is assumed to be *G*-normally distributed:

$$X_{t+1} \stackrel{d}{=} N(0, [\underline{\sigma}_t^2, \overline{\sigma}_t^2]).$$

• X_{t+1} is assumed to be *G*-normally distributed:

$$X_{t+1} \stackrel{d}{=} N(0, [\underline{\sigma}_t^2, \overline{\sigma}_t^2]).$$

• For each \bar{t} , use the passed 1 year data $\{X_{\bar{t}-s}\}_{0 \le s \le l-1}$ to estimate two parameters $\underline{\sigma}_{\bar{t}}^2$ and $\overline{\sigma}_{\bar{t}}^2$ at the day \bar{t} :

• X_{t+1} is assumed to be *G*-normally distributed:

$$X_{t+1} \stackrel{d}{=} N(0, [\underline{\sigma}_t^2, \overline{\sigma}_t^2]).$$

- For each \bar{t} , use the passed 1 year data $\{X_{\bar{t}-s}\}_{0 \le s \le l-1}$ to estimate two parameters $\underline{\sigma}_{\bar{t}}^2$ and $\overline{\sigma}_{\bar{t}}^2$ at the day \bar{t} :
- Fix a window width w = 100 use the moving window

$$\sigma_{\bar{t},w}^2 := \sigma^2(X_{\bar{t}-w+1}, \cdots, X_{\bar{t}}).$$

$$\overline{\sigma}_{\overline{t}}^{2} = \max\{\sigma_{\overline{t},20}^{2}, \sigma_{\overline{t}-s,w}^{2}; s \in [0, \cdots, l-w]\},\\ \underline{\sigma}_{t}^{2} = \min\{\sigma_{t,20}^{2}, \sigma_{t-s,w}^{2}; s \in [0, \cdots, l-w]\}.$$

< 一型

$$\overline{\sigma}_{\overline{t}}^2 = \max\{\sigma_{\overline{t},20}^2, \sigma_{\overline{t}-s,w}^2; s \in [0, \cdots, I-w]\},\\ \underline{\sigma}_{\overline{t}}^2 = \min\{\sigma_{t,20}^2, \sigma_{t-s,w}^2; s \in [0, \cdots, I-w]\}.$$

•
$$\sigma_{\overline{t},w}^2(X_{\overline{t}-w+1},\cdots,X_{\overline{t}})$$
 is the std of $(X_{\overline{t}-w+1},\cdots,X_{\overline{t}})$.

< 一型

$$\overline{\sigma}_{\overline{t}}^2 = \max\{\sigma_{\overline{t},20}^2, \sigma_{\overline{t}-s,w}^2; s \in [0, \cdots, I-w]\},\\ \underline{\sigma}_{\overline{t}}^2 = \min\{\sigma_{t,20}^2, \sigma_{\overline{t}-s,w}^2; s \in [0, \cdots, I-w]\}.$$

•
$$\sigma_{\tilde{t},w}^2(X_{\tilde{t}-w+1},\cdots,X_{\tilde{t}})$$
 is the std of $(X_{\tilde{t}-w+1},\cdots,X_{\tilde{t}})$.
• $\operatorname{GVaR}_{\alpha,\tilde{t}}(X_{\tilde{t}+1}) = -\max\{x: F_{G_{\tilde{t}}}(x) \leq \alpha\}.$

< 一型

$$\overline{\sigma}_{\overline{t}}^{2} = \max\{\sigma_{\overline{t},20}^{2}, \sigma_{\overline{t}-s,w}^{2}; s \in [0, \cdots, I-w]\},\\ \underline{\sigma}_{t}^{2} = \min\{\sigma_{t,20}^{2}, \sigma_{t-s,w}^{2}; s \in [0, \cdots, I-w]\}.$$

•
$$\sigma_{\overline{t},w}^2(X_{\overline{t}-w+1},\cdots,X_{\overline{t}})$$
 is the std of $(X_{\overline{t}-w+1},\cdots,X_{\overline{t}})$.
• $\operatorname{GVaR}_{\alpha,\overline{t}}(X_{\overline{t}+1}) = -\max\{x: F_{G_{\overline{t}}}(x) \le \alpha\}.$
 $F_G(x) = \int_{-\infty}^x \frac{\sqrt{2}}{\sqrt{\pi(\overline{\sigma}+\underline{\sigma})^2}} \left[\exp(\frac{-y^2}{2\overline{\sigma}^2})\mathbf{1}_{y\le 0} + \exp(\frac{-y^2}{2\underline{\sigma}^2})\mathbf{1}_{y>0}\right] dy.$
(5)

Comparison:

K. Kuester, S. Mittnik, and M. S. Paolella. Value-at-Risk Prediction: A compar- ison of alternative strategies. Journal of Financial Econometrics, 4(1):53–89, 2006.

- Nonlinear expectation theory, especially sub linear expectation theory is an important tool to "hedge" the probability distribution uncertainty
- Maximal distribution and nonlinear normal distribution is fundamental, and can quantitatively cover most real world cases.

- Nonlinear expectation theory, especially sub linear expectation theory is an important tool to "hedge" the probability distribution uncertainty
- Maximal distribution and nonlinear normal distribution is fundamental, and can quantitatively cover most real world cases.
- The max-mean algorithm, based on the nonlinear LLN gives us the asymptotical optimal estimate of the nonlinear mean E[φ(X)] of X through its real data sample {x_i} is very robust.
- This algorithm provide us automatically the degree of uncertainty, through the degree of its nonlinearity.

• According to our new law of large number, maximal distribution $M_{[\underline{\mu},\overline{\mu}]}$ is the other typical case which was often treated as a constant.

- According to our new law of large number, maximal distribution $M_{[\underline{\mu},\overline{\mu}]}$ is the other typical case which was often treated as a constant.
- Need a deep collaboration of experts from probability, functional analysis, PDE and stochastic PDE, scientific computing, especially with experts of economics and statistics to develop this new, deep directions

- According to our new law of large number, maximal distribution $M_{[\underline{\mu},\overline{\mu}]}$ is the other typical case which was often treated as a constant.
- Need a deep collaboration of experts from probability, functional analysis, PDE and stochastic PDE, scientific computing, especially with experts of economics and statistics to develop this new, deep directions
- Combining with machine learning, to get more robust and deeper understanding the information we can obtain through a real and dynamical sample {x_i}.

A Nicole 3×25 Joyeux Anniversaire