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I.I.D. assumption in statistics and econometrics

I.I.D. assumptions for sequences of real world data {Xi}∞
i=1;

Machine learning, deep learning, risk measuring pricing in finance ...
Black-Scholes pricing formula, model uncertainty

Use nonlinear expectation, specially sublinear expectation,
Covering probability uncertainty {Pθ}θ∈Θ

Nonlinearity of expectation ⇐⇒ degree of uncertainty of probabilities
Worst case philosophy:

Ê[X ] := max
θ∈Θ

EPθ
[X ], −Ê[−X ] := min

θ∈Θ
EPθ

[X ],

Ê is a sublinear expectation. Inversely...
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From Probability to probability uncertainty
From linear to Nonlinear Expectations

(Ω,F ,P) Probability space ⇐⇒ Linear Expectation

(Ω,H,E), H: a linear space of functions X (ω), called random
variables, s.t.
X1(ω), · · · ,Xd (ω) ∈ H =⇒ ϕ(X1(ω), · · · ,Xd (ω)) ∈ H,
for all Lipschitz functions ϕ(x1, · · · , xd )

Nonlinear expectation E : H 7→ R

E is a nonlinear functional
Monotonicity: E[X ] ≥ E[Y ] if X ≥ Y
Constant preserving: E[c ] = c ;
Sublinearity: E[X + Y ]≤E[X ] + E[Y ] and

E[λX ] = λE[X ], ∀λ ≥ 0

E[Xi ] ↓ 0, if Xi (ω) ↓ 0, ∀ω
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Covering the risk of probability uncertainty
by sublinear expectation

Very useful parameterized sublinear models

Sublinear is the necessary to cover the uncertainty of probabilities
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Expectation nonlinearity v.s.
Probability & distribution uncertainty

E[X ] = max
θ∈Θ

Eθ [X ] = max
θ∈Θ

ˆ
Ω

XdPθ,

{Pθ}θ∈Θ: probability model uncertainty

Fθ(x) := Pθ(X ≤ x)

F[ϕ] = sup
θ∈Θ

Fθ [ϕ] = sup
θ∈Θ

ˆ
Ω

ϕ(X )dPθ
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Uncertainty version of I.I.D. of two random variables
X and Y

Definition
The distribution uncertainty of a random X equals to (resp. stronger
than) that of Y , if for any test function ϕ(x),

E[ϕ(X )] = E[ϕ(Y )], denoted by X d
= Y

(resp.E[ϕ(X )] ≥ E[ϕ(Y )], denoted by X
d
≥ Y )

Y is indenpendent of X if for any test function ϕ(x , y),

E[ϕ(X ,Y )] = E[E[ϕ(x ,Y )]x=X ].
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Uncertainty version of I.I.D. time sequence {Xi}∞
i=1

E[ϕ(Xi )] = E[ϕ(X1)], Xi+1 is independent of (X1, · · · ,Xi ), for all i .

Remark.

{Xi}∞
i=1 is an IID =⇒ {ϕ(Xi )}∞

i=1 is also IID ∀ϕ
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A typical toy model: nonlinear Bernoulli model

At time t = 1, we randomly choose a ball from an urn containing
Black and White balls (W1 + B1 = 100)
But we know only W1 ∈ [40, 60]

X1(ω) = 1{W1= true} − 1{B1= true}
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Repeat this game at t = 1, 2, 3, · · · ,

Each time i , Wi is changed within Wi ∈ [40, 60]

We get a sequence of random variables {Xi (ω)}∞
i=1;

This is a typical case of our daily uncertainty: enveronment changes
all the time
The output {Xi}∞

i=1 is IID:
X1,X2, · · · are identically distributed (same distribution uncertainty)
Xi+1 is independent of {Xi}ni=1.

Sn = ∑n
i=1 Xi : a nonlinear Bernoulli random walk.

{ϕ(Xi )}∞
i=1 is also IID, for any given function ϕ(x).
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A general random generator of nonlinear IID sequence
{Xi}∞

i=1

The urn =⇒ A generator of random vectors Xi , at time t = i ,

Xi (ω)
d
= Fθ, i = 1, 2, 3, · · ·

We can observe the output Xi at t = i with

L(Xi ) ∈ {Fθ}θ∈Θ

Xi+1
d
= Xi , Xi+1 is independent of (X1,X2, · · · ,Xi )
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An important special case: I.I.D. maximal distributed
sequence {Xi}∞

i=1

{Fθ}θ∈Θ = M[µ,µ]: all prob. distributions concentrated on [µ, µ].

Many cases, we have

L(Xi ) ∈ {Fθ}θ∈Θi , Θi ⊂ Θ

But we use Xi
d
= {Fθ}θ∈Θ to robustly cover the uncertainty.
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Important advantage of nonlinear expectation space

Example: Maximally-distributed i.i.d sequence {Xi}∞
i=1: covers all

possible distributions of the sequence satisfying

µ ≤ Xi (ω) ≤ µ, i = 1, 2, · · · E[ϕ(Xi )] = max
v∈[µ,µ]

ϕ(v)

Xi
d
= M[µ,µ].

Connected to Error Calculation: method widely used in the human
history, longtime before the birth of Probability Theory.
Thus, principally, all random sequences can be treated as an nonlinear
IID random sequence.
How to narrow down µ− µ through real data is our important task
Challenging objective: to establish a systematic framework (Ω,H,E)
compatible with (Ω,F ,P)
Important: hidden behind are PDEs (linear/nonlinear heat equation)!
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Two fundamentally important nonlinear distributions

Y d
= M[µ,µ] is defined by aY + bȲ d

= (a + b)Y ;

X d
= N(0, [σ2, σ2]) is defined by aX + bX̄ d

=
√

a2 + b2X ;
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The universality of the IID assumption under sublinear
expectation

For a bounded random sequence {Xi}∞
i=1 one can always enlarge the

probability uncertainty so that {Xi}∞
i=1 is an I.I.D. sequence under the

enforced sublinear expectation E.

Lemma
Assume that a random sequence {Xi}∞

i=1 is bounded by µ ≤ Xi ≤ µ. Then

we have Xi
d
≤ X̄i and {Xi}∞

i=1

d
≤ {X̄i}∞

i=1, where {X̄i}∞
i=1 is an IID

sequence with X̄i
d
= M[µ,µ].

Thus one can robustly enforce E[·] and assume that {Xi}∞
i=1 is IID under

E[·].
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The universality of the IID assumption under sublinear
expectation

If a random sequence {Xi}∞
i=1 is not bounded, we can set

Y (j)
i =

2
π
arctan(X (j)

i ), j = 1, 2, · · · , d .

Then {Yi}∞
i=1 can be robustly assumed to be IID.

On the other hand, the ‘IID’ assumption is very flexible and can cover
many important cases.
Example If {Xi}∞

i=1 is i.i.d. and the distribution of X1 is linear, then
it becomes to IID sequence in the classical case.
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Nonlinear Law of large number

Theorem (Peng2007)

Let {Yi}∞
i=1 be IID sequence. Assume limc→∞ E[(|Y1| − c)+] = 0.

.
Then, for each ϕ ∈ Cb(R),

lim
n→∞

E[ϕ(
Y1 + · · ·+ Yn

n
)] = E[(ϕ(Y )] = max

v∈[µ,µ]
ϕ(v).

where µ = E[Y1], µ = −E[−Y1].

Y d
= M[µ,µ] : Maximal distribution.

u(x , t) := E[ϕ(x + (1− t)Y )] solves the 1st order PDE
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Nonlinear Central limit theorem

Theorem (Peng2008-2010)
Let {Xi}∞

i=1 be IID sequence. Assume furthermore

E[(|X1|2+ε] < ∞ E[X1] = E[−X1] = 0

Then, for each ϕ ∈ Cb(R),

lim
n→∞

E[ϕ(
X1 + · · ·+ Xn√

n
)] = uϕ(0, 0) = NG (ϕ).

∂tuϕ + G (∂2
xxu

ϕ) = 0, t ∈ [0, 1], uϕ(1, x) = ϕ(x),

G (a) :=
1
2
[σ2a+ − σ2a−]

σ2 := E[X 2
1 ], σ2 := −E[−X 2

1 ] > 0,

Peng Shige International Conference in Honor of Professor Nicole El Karoui for Her 75th Birthday, May 21-24 ParisRecent progresses of LLN and CTL under Uncertainty 17 / 48



Nonlinear Central limit theorem

Theorem (Peng2008-2010)
Let {Xi}∞

i=1 be IID sequence. Assume furthermore

E[(|X1|2+ε] < ∞ E[X1] = E[−X1] = 0

Then, for each ϕ ∈ Cb(R),

lim
n→∞

E[ϕ(
X1 + · · ·+ Xn√

n
)] = uϕ(0, 0) = NG (ϕ).

∂tuϕ + G (∂2
xxu

ϕ) = 0, t ∈ [0, 1], uϕ(1, x) = ϕ(x),

G (a) :=
1
2
[σ2a+ − σ2a−]

σ2 := E[X 2
1 ], σ2 := −E[−X 2

1 ] > 0,

Peng Shige International Conference in Honor of Professor Nicole El Karoui for Her 75th Birthday, May 21-24 ParisRecent progresses of LLN and CTL under Uncertainty 17 / 48



Sketch of the proof: u ∈ C 1+ α
2 ,2+α [Krylov]

lim
n→∞

E[ϕ(Sn
n )] = uϕ(0, 0),

Sn
k := 1√

n (X1 + · · ·+ Xk), k = 1, · · · , n.

u(Sn
n , 1)− u(0, 0) =

n−1

∑
k=0

[u(Sn
k+1,

k + 1
n

)− u(Sn
k ,

k
n
)]

E[u(Sn
k+1,

k + 1
n

)− u(Sn
k ,

k
n
)] = E[u(Sn

k +
1√
n
Xk+1,

k
n
+

1
n
)− u(Sn

k ,
k
n
)]

= E[
1
n

∂tu(x , t) +
Xk+1√

n
∂xu(x , t) +

X 2
k+1

2n
∂2
xxu(x , t)] + o(

1
n
)

= 0+ o(
1
n
), (x , t) = (Sn

k ,
k
n
)
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Convergence rate of LLN

Theorem (Fang-Peng-Shao-Song(2017))
We have

E[d2
[µ,µ](X n)] = E[((X n − µ)+)2 + ((X n − µ)−)2] ≤

2[σ2 + (µ− µ)2]

n
,

(1)
where

µ = E[X1], µ = −E[−X1].

and
σ2 := sup

θ∈Θ
EPθ

[(X1 − EPθ
[X1])

2].
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Converges rate of nonlinear LLN and CLT

Remark. ([Fang-P.-Shao,Song 2017])

If µ > µ then the convergence of 1
n (X1 + · · ·+ Xn)) to cannot be a strong

one!

[Fang-P.-Shao,Song] (2017) Limit theorems with rate of convergence under
sublinear expectations.
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Stein Method under nonlinear expectation

Stein equation: the key tool of Stein method. Song (2017) had found
the corresponding "Stein equation", and provided Nonlinear Stein
method.
the rate of convergence is:：

sup
|ϕ|Lip≤1

∣∣∣∣Ê[ϕ(X1 + · · ·+ Xn√
n

)]−NG (ϕ)

∣∣∣∣ . 1
n

α
2
,

where α ∈ (0, 1) depends only on −Ê[−X 2
1 ] and Ê[X 2

1 ].
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Converges rate of nonlinear CLT

Theorem (Krylov 2018)

Assume that |φ(x)− φ(y)| ≤ |x − y |β, Mβ := supξ∈Θ E (|ξ|2+β) < ∞.
Then

|E[ϕ( 1
n (Y1 + · · ·+ Yn))]−E[ϕ(Y )]| ≤ Nn−β2/(4+2β)

where N depends only on Mβ and σ2.

[Jin &Peng] (2016) Optimal unbiased estimation for maximal
distribution, arXiv:1611.07994v1,
[Fang-Peng.-Shao & Song] (2017) Limit theorems with rate of
convergence under sublinear expectations, arxiv.
[Song] (2017) Normal approximation by Stein’s method under
sublinear expectations",
[Krylov 2018] “On Shige Peng’s Central Limit Theorem” , arxiv
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Related works

[Maccheroni & Marinacci] (2005) "A strong law of large numbers for
capacities", Ann. Probab. 33, 1171-1178.
[Marinacci] (1999) "Limit laws for non-additive probabilities and their
frequentist interpretation", J. Econom. Theory.
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Nonlinear normal distributions

Definition
A random variable X in (Ω,H,E) is normal if the function

u(t, x) := E[ϕ(x +
√
1− tX )]

is the solution of the nonlinear PDE

∂tu + G (∂xxu) = 0, u(1, x) = ϕ(x).

where
G (a) = 1

2 [σ
2a+ − σ2a−] σ2 = E[X 2], σ2 = −E[−X 2]
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Classical ‘Monté-Carlo’ approach for estimating Ê[ϕ(X )]
through data

Key point: How to obtain Ê[ϕ(X )] through its sample {xi}Ni=1?
In many practice cases: we care about Ê[ϕ(X )] with a specific
function ϕ(x):
a consumption utility function, a contract, a cost function ....
In a classical probability space (Ω,F ,P), we can apply LLN to
calculate

E [ϕ(X )] ∼M[ϕ(X )] :=
1
N

N

∑
i=1

ϕ(xi )

where {xi}Ni=1 is an IID sample of X .

But: Is {xi}Ni=1 a classical IID?
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ϕ-max-mean algorithm: the data-based distribution of X

Let (Ω,H, Ê) be a sublinear expectation space and

{xi}n×m
i=1 : IID sample of a random vector X

The max-mean algorithm to estimate Ê[ϕ(X )]:

M̂[ϕ] = max{Y k
n : k = 0, · · · ,m− 1},

where

Y k
n =

1
n

n

∑
i=1

ϕ(xnk+i ).

By the above LLN, as n→ ∞, {Y k
n }m−1

k=0
d

=⇒ an IID {Y k}m−1
k=0 ,

Y k d
= M[µ,µ], with µ = Ê[ϕ(X )], µ = −Ê[−ϕ(X )]

But max{Y k
n : k = 0, · · · ,m− 1} provides us the asymptotically

optimal unbiased estimate .
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ϕ-max-mean algorithm of X from IID sample {xi}mn
i=1

max

 ϕ(X1)+···+ϕ(Xn)
n︸ ︷︷ ︸

Y 0
n

, · · · , ···n︸︷︷︸
Y k

n

, · · · , ϕ(X(m−1)n+1)+···+ϕ(Xmn)

n︸ ︷︷ ︸
Y m−1

n


E[ϕ(X )] 'Max-Mean-[ϕ({xi})]

= max
0≤k≤m−1

∑n
i=1 ϕ(xkn+i )

n
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Optimality of the estimate

The optimality of the above estimate is based on the following quite
simple, but very fundamental result:

Theorem (Jin-Peng2016)

Let Y 1, · · · ,Y m be IID and maximally distributed:

Y i d
= M[µ,µ], i = 1, · · · ,m,

where µ ≤ µ is two unknown parameters. Then

µ ≤ min{Y 1(ω), · · · ,Y n(ω)} ≤ max{Y 1(ω), · · · ,Y n(ω)} ≤ µ.

Moreover
µ̂n = max{Y 1, · · · ,Y n},

is the maximum unbiased estimate of µ.
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Parameter estimates for nonlinear distributed model

Many typical nonlinear distributions

M[µ,µ], N(µ, [σ2, σ2]), P[λ,λ] (Nonlinear Poisson)

asymptotically unbiased estimates: ，

σ̂2 := min
1≤k≤m

σ2
k , σ̂

2 := max
1≤k≤m

σ2
k

where σ2
k :=

1
n

n

∑
j=1

(xn(k−1)+j − µ)2.
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Maximal and Normal distributions and Nonlinear PDEs

Y d
= M[µ,µ] defined by aY + bȲ d

= (a + b)Y ;
is directly related to the 1st order PDE

∂tuϕ + g(∂xuϕ) = 0,
uϕ(x , 1) = ϕ(x).

for uϕ(t, x) on t ∈ [0, 1], x ∈ Rd .
Through

Fg [ϕ] := uϕ(0, 0) = E[ϕ(Y )].
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Maximal and Normal distributions and Nonlinear PDEs

X d
= N(0, [σ2, σ2]) defined by aX + bX̄ d

=
√

a2 + b2X is calculated
by the 2nd order parabolic PDEs

∂tv ϕ + G (∂2
xxv

ϕ) = 0,
v ϕ(x , 1) = ϕ(x).

Through :
FG [ϕ] := v ϕ(0, 0) = E[ϕ(X )]
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
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Nonlinear Brownian Motion: (Continuous time i.i.d)

Definition.
B is called a G -Brownian motion if:

For each t1 ≤ · · · ≤ tn, Btn − Btn−1 is indep. of (Bt1 , · · · ,Btn−1).

Bt
d
= Bs+t − Bs , for all s, t ≥ 0

E[|Bt |3] = o(t).

Theorem.
If (Bt)t≥0 is a G–Brownian motion and E[Bt ] = E[−Bt ] ≡ 0 then:

Bt+s − Bs
d
= N(0, [σ2t, σ2t]), ∀ s, t ≥ 0
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Real case study: from VaR to GVaR
Problem challenged by CFFEX
(China Financial Future Exchange)

VaRF
α (X ) = − inf{x | P(X ≤ x) > α}

= − inf{x | F (x) > α},

Can we use G -normal distribution in the place of a linear distribution F?
Nonlinear normally distributed VaR —G-VaR:

Xt+1
d
= NG .

{Xt}: of daily return data of CSI300, April 13, 2010- April 16, 2015;

{Xt}: S&P 500 daily returns from 04/03/2010 to 09/12/2014,
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Empirical test of robust VaR

GVaRα(X ) := − inf{x ∈ R : FG (x) > α}.

We have
FG (x) = u(t, x)|t=0,

u is the solution of the PDE

∂tu + G (∂2
xxu) = 0, (2)

with the Cauchy
u(1, x) = 1[0,∞)(x). (3)

FG has the explicit expression:

FG (x) =
ˆ x

−∞

√
2√

π(σ + σ)2

[
exp(
−y2

2σ2 )1y≤0 + exp(
−y2

2σ2 )1y>0

]
dy . (4)
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Xt+1 is assumed to be G -normally distributed:

Xt+1
d
= N(0, [σ2

t , σ2
t ]).

For each t̄, use the passed 1 year data {Xt̄−s}0≤s≤l−1 to estimate two
parameters σ2

t̄ and σ2
t̄ at the day t̄:

Fix a window width w = 100 use the moving window

σ2
t̄,w := σ2(Xt̄−w+1, · · · ,Xt̄).
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Then get the upper and low data variances:

σ2
t̄ = max{σ2

t̄,20, σ2
t̄−s,w , ; s ∈ [0, · · · , l − w ]},

σ2
t = min{σ2

t,20, σ2
t−s,w ; s ∈ [0, · · · , l − w ]}.

σ2
t̄,w (Xt̄−w+1, · · · ,Xt̄) is the std of (Xt̄−w+1, · · · ,Xt̄).

GVaRα,t̄(Xt̄+1) = −max{x : FGt̄ (x) ≤ α}.

FG (x) =
ˆ x

−∞

√
2√

π(σ + σ)2

[
exp(
−y2

2σ2 )1y≤0 + exp(
−y2

2σ2 )1y>0

]
dy .

(5)
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纵坐标表示标的对数收益取值，横坐标表示时间：  
深蓝线：CSI  300  从      2011年 6月 1日  到   2015年 7月 6日  对数收益；黑色线表示对数收
益率的   G-­‐VaR  变化，红色线表示对数收益率的   H-­‐VaR  取值变化。  
  
黑线是跟踪 20天均值时，windows=180，G-­‐VaR突破率 0.61，H-­‐VaR突破率 0.51，保证金相
对   H-­‐VaR  每日平均减少 16%。     
  

Peng Shige International Conference in Honor of Professor Nicole El Karoui for Her 75th Birthday, May 21-24 ParisRecent progresses of LLN and CTL under Uncertainty 44 / 48



Comparison:
K. Kuester, S. Mittnik, and M. S. Paolella. Value-at-Risk Prediction: A
compar- ison of alternative strategies. Journal of Financial Econometrics,
4(1):53–89, 2006.
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Concluding

Nonlinear expectation theory, especially sub linear expectation theory
is an important tool to "hedge" the probability distribution uncertainty
Maximal distribution and nonlinear normal distribution is fundamental,
and can quantitatively cover most real world cases.

The max-mean algorithm, based on the nonlinear LLN gives us the
asymptotical optimal estimate of the nonlinear mean E[ϕ(X )] of X
through its real data sample {xi} is very robust.
This algorithm provide us automatically the degree of uncertainty,
through the degree of its nonlinearity.
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Concluding

According to our new law of large number, maximal distribution M[µ,µ]

is the other typical case which was often treated as a constant.

Need a deep collaboration of experts from probability, functional
analysis, PDE and stochastic PDE, scientific computing, especially
with experts of economics and statistics to develop this new, deep
directions
Combining with machine learning, to get more robust and deeper
understanding the information we can obtain through a real and
dynamical sample {xi}.
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A Nicole
3× 25 Joyeux Anniversaire
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