

Dynamic models for human Longevity with Lifestyle Adjustments

On the longevity adventure with Nicole and LoLitA

Stéphane Loisel

ISFA, Université Lyon 1 Conférence en l'honneur de Nicole, Paris, 2019

GDPR Statement

Due to GDPR there will be no picture of Nicole during this talk

Modified GDPR Statement

Due to GDPR there will be only one picture of Nicole during this talk

Why a talk about football at the WISE day?

Age pyramids, England

 Excerpt from Sarah Kaakai PhD thesis
 (Thèse de doctorat de l'UPMC encadrée par Nicole El Karoui, 2017)

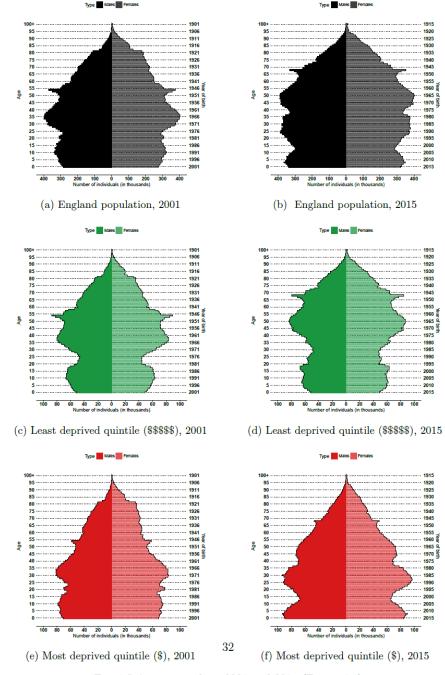
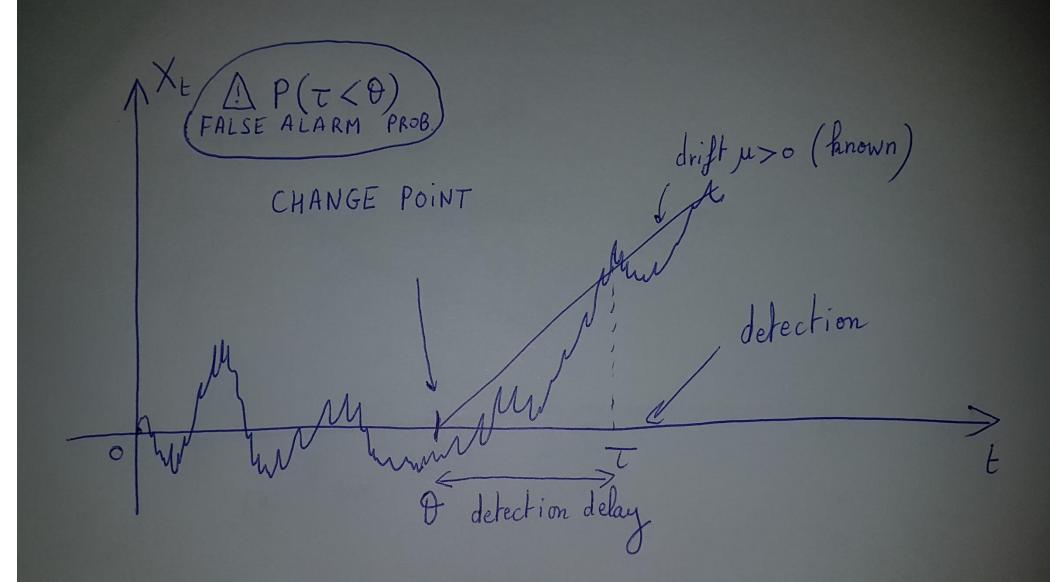
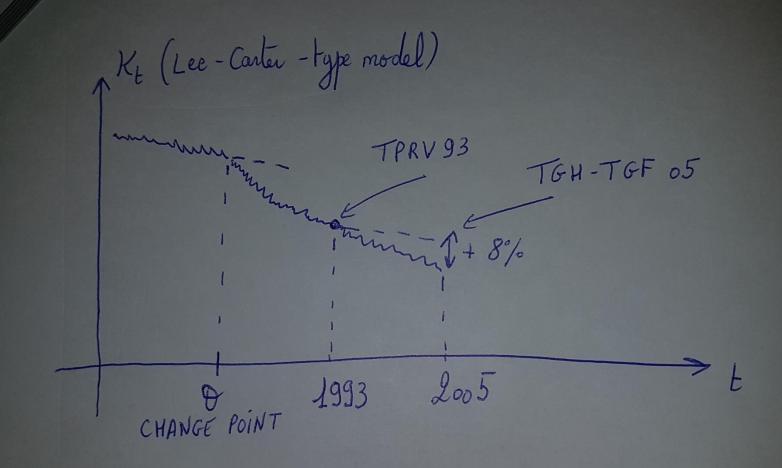


Fig. 1.3 Age pyramids in 2001 and 2015 (Figure 4.1)

Yahia Salhi





Bayesian setup for random change-point

Brownian framework with abrupt change in the drift

- Based on the conditional distribution of the time of change,
- Formulated as an optimal stopping problem
- Page(1954), Shiryaev(1963), Roberts(1966), Beibel(1988),
 Moustakides (2004), and many others...

Poisson framework with abrupt change in intensity

- Based on the conditional distribution of the time of change, with exponential or geometric prior distribution
- ► More recent studies: Gal (1971), Gapeev (2005), Bayraktar (2005, 2006), Dayanik (2006) for compound Poisson, Peskir, Shyriaev(2009) and others

Mathematical settings

We consider a portfolio of insured population:

- Let $N = (N_t)_{t \ge 0}$ be a counting process indicating the deaths of policyholders and $\lambda = (\lambda_t)_{t \ge 0}$ its intensity.
- The counting process N_t , is available sequentially through the filtration $\mathcal{F}_t = \sigma\{N_s, 0 < s \leq t\}$.
- We suppose that the insurance company relies on a Cox-like model to project her own experienced mortality:

$$\lambda_t = \underline{\rho} \lambda_t^0,$$

- lacksquare λ_t^0 is a reference intensity and ho is a positive parameter.
- lacksquare λ^0 is considered deterministic and may refer whether to a projection of national population/best estimate...

Model risk/parameter uncertainty: Change-point

$$\lambda_t = \mathbf{1}_{\{t < \boldsymbol{\theta}\}} \underline{\rho} \lambda_t^0 + \mathbf{1}_{\{t \geq \boldsymbol{\theta}\}} \overline{\rho} \lambda_t^0.$$

Without loss of generality we can assume that $\rho=1$ and let $\rho=\overline{\rho}>1$.

Probabilistic formulation

Let \mathbb{P}_{θ} (resp. $\mathbb{E}_{\theta}[\cdot]$) be the probability measure (resp. expectation) induced when the change takes place at time θ

Example

- For $\theta = 0$, the process is *out-of-control*
- For $\theta = \infty$, the process is *in-control*

Detect the change-point θ as quick as possible while avoiding false alarms

OPTIMALITY CRITERIA, LORDEN (1971)-LIKE

- lacksquare The detection delay $\mathbb{E}_{ heta}\left[(extstyle{N}_{ au} extstyle{N}_{ heta})^{+} \middle| \mathcal{F}_{ heta}
 ight]$
- The frequency of false alarm $\mathbb{E}_{\infty}[N_{\tau}]$

OPTIMIZATION PROBLEM

OPTIMIZATION PROBLEM

Find
$$\tau^*$$
 such that $C(\tau^*) = \inf_{\tau} \sup_{\theta \in [0,\infty]} \operatorname{ess sup} \mathbb{E}_{\theta} \left[(N_{\tau} - N_{\theta})^+ \middle| \mathcal{F}_{\theta} \right]$ subject to $\mathbb{E}_{\infty}[N_{\tau}] = \omega$.

ASSUMPTION

- 2 $N_{\infty}=\infty$ $\mathbb{P}_{\infty},\mathbb{P}_{0}$ -a.s.

Optimality of the Cusum procedure (1/7)

Let the Radon-Nikodym density of \mathbb{P}_0 with respect to \mathbb{P}_{∞} be defined as

$$\left. rac{d\mathbb{P}_0}{d\mathbb{P}_\infty}
ight|_{\mathcal{F}_t} = \exp U_t,$$

where $U_t = \log(\rho)N_t + (1-\rho)\int_0^t \lambda_s^0 ds$ is the log-likelihood ratio. Let V(x) be the CUSUM process; with head-start $0 \le x < m$; defined as

$$V_t(x) = U_t - (-x) \wedge \underline{U}_t \tag{1}$$

where \underline{U}_t is the running infimum of U, i.e. $\underline{U}_t = \inf_{s \leq t} U_s$.

The process V(x) measures the size of the drawup, comparing the present value of the process U to its historical infimum \underline{U} .

Let $\tau_m(x)$ be the fist hitting time of V(x) of the barrier m, i.e.

$$\tau_m(x)=\inf\{t\geq 0,\,V_t(x)\geq m\}.$$

Theorem

If
$$\mathbb{E}_{\infty}[N_{\tau_m(0)}] = \omega$$
 then $\tau_m(0)$ is optimal, i.e. $\inf_{\tau} C(\tau) = C(\tau_m(0))$

Typical paths with change of regime at date 3

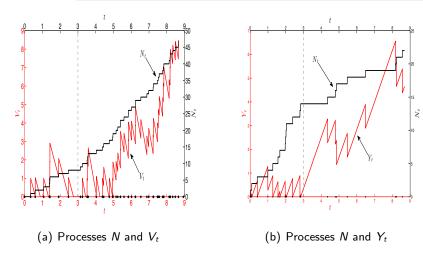
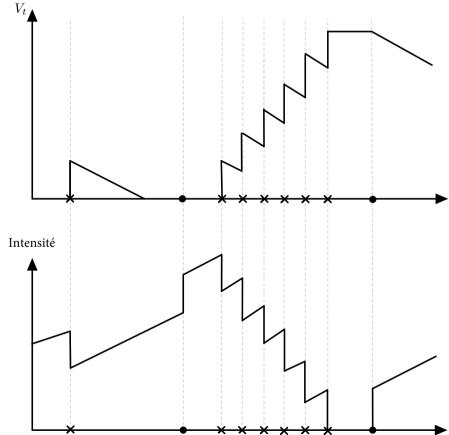


Figure: Sample paths, for $\rho=1.5$, of the cusum processes N,V^{ρ} (left) and N,Y^{ρ}_t for $\rho=0.5$ (right).



Monitoring Mortality

Sounding an alarm for the change $\rho^{\text{Hyp}} \rightarrow \rho^{\text{Target}}$

• We simulate deaths on the portfolio with different levels $\rho^{\rm Target}$ = 95%, 90% and 85% s.t.

$$D(x, t) \sim \mathsf{Pois}(\rho^{\mathsf{Target}} \times L(x, t) \times \mu^{\mathsf{ERM00}}(x, t))$$

- We suppose that *the actuary* made an assumption of ho^{Hyp} = 100%
- We set-up the monitoring/surveillance on the observed deaths and try to detect a change from $\rho^{\rm Hyp}$ = 100% to $\rho^{\rm Target}$ = 95%, 90% and 85% respectively.
- We test different sizes of the portfolio small sized 1000, 5000 and a (relatively) large 10000 and compare the results

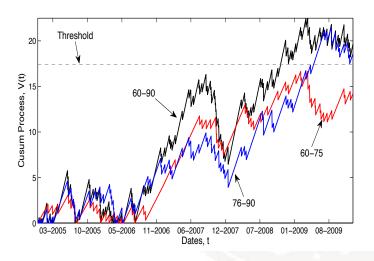
How to choose parameter Rhô?

		fen	nales		males					
	Doubled improvements		Mortality level at 80% of the expected		Doubled improve		Mortality level at 80% of the expected			
	pension	interest	pension	interest	pension	interest	pension	interest		
	value	rate	value	rate	value	rate	value	rate		
55	+5.4%	+32bp	+3.1%	+19bp	+6.7%	+42bp	+3.7%	+24bp		
65	+5.76%	+43bp	+4.7%	+36bp	+7%	+57bp	+5.7%	+48bp		
75	+5.2%	+55bp	+7.6%	+80bp	+6.3%	+74bp	+9.1%	+107bp		
85	+3.6%	+60bp	+13.2%	+207bp	+4.3%	+84bp	+15.4%	+281bp		

TABLE: TGH05/TGF05 with flat interest rate of 3%

Monitoring Mortality

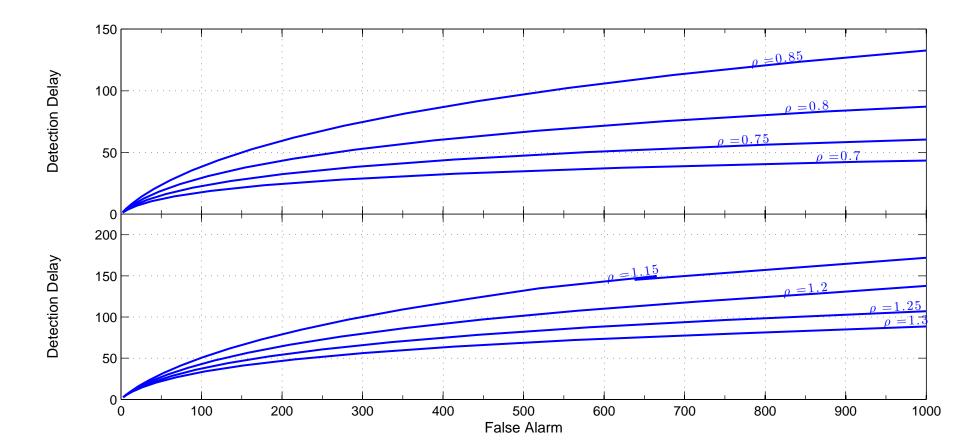
Sounding an alarm for the change ρ^{Hyp} = 100% $\rightarrow \rho^{\mathrm{Targer}}$ = 95%



Detection Delay

Impact of Portfolio Size and Age Tranches

	Size		1000		5000			10000		
	Ages Hyp.	60-90	60-75	76-90	60-90	60-75	76-90	60-90	60-75	76-90
deaths	$100\% \rightarrow 95\%$ $100\% \rightarrow 90\%$ $100\% \rightarrow 85\%$	596 244 92	710 320 122	498 186 100	246 106 58	99 55 35	107 59 36	240 112 61	99 55 34	106 58 36
time	100% → 95% 100% → 90% 100% → 85%	1086 931 707	1130 1124 980	1120 947 734	576 276 161	617 373 247	422 241 159	308 151 84	327 192 127	212 127 80





Bibliography (for technical details)

- N. El Karoui, S. Loisel, Le risque de longévité est-il assurable?, Revue d'Economie Financière (2017).
- E. Debonneuil, S. Loisel, F. Planchet, **Do actuaries believe in longevity deceleration?**, IME (2017).
- N. El Karoui, S. Loisel, Y. Salhi, Minimax Optimality in Robust Detection of a Disorder Time in Poisson Rate, Annals of Applied Probability (2017).
- D. Blake, N. El Karoui, R. MacMinn, S. Loisel, Longevity Risk and Capital Markets: The 2015-16 Update, IME (2018).
- PhD Theses of Alexandre Boumezoued and Sarah Kaakai (UPMC and LoLitA)
- Longevity 11 Conference, Lyon, Sept. 2015 (slides, articles and videos). LoLitA Closing Conference, Paris, Jan. 2018.